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Outline 

• Background	
• Low-Power	 Processor	 Design	 with	 NVM	 in	
High-Voltage	Domain	(NVSleep)	

• Low-Power	 Processor	 Design	 with	 NVM	 in	
Low-Voltage	Domain	(Respin)	

• Security	 Research	 on	 Processors	 Equipped	
with	NVM	Caches	(NV-Insecure)	
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Universal Demand for Low Power 
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•  Mobility	
•  Ba"ery	life	

•  Performance		
•  Power	constraints	

•  Energy	cost		
•  Environment	
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Non-Volatile Memory Basics 
• Non-VolaLlity	–	Resistance	as	data	representaLon	
(e.g.	PCM,	STT-RAM,	ReRAM,	etc.)	

• Near-Zero	Leakage	Power	–	Good	fit	for	future	
power-constrained	compuLng	

• High	Density	–	Great	design	candidate	in	the	big	
data	era	

• Good	Performance	–	Feasible	for	on-chip	storage	
replacement	
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STT-RAM 
•  Unique	features	of	STT-RAM:	fast	read	speed,	low	read	energy,	unlimited	
write	endurance,	and	good	compaLbility	with	CMOS	technology	

•  Shortcomings:	long	write	latency	and	high	write	energy	
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AnL-parallel	state:	high-
resistance,	represenLng	a	“1”	

Parallel	state:	low-resistance,	
represenLng	a	“0”	

MTJ	(MagneLc	Tunnel	JuncLon)	

STT-RAM	Cell	(1T-1MTJ)	
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Outline 

• Background	
• Low-Power	 Processor	 Design	 with	 NVM	
in	High-Voltage	Domain	(NVSleep)	

• Low-Power	Processor	Design	with	NVM	in	
Low-Voltage	Domain	(Respin)	

• Security	Research	on	Processors	Equipped	
with	NVM	Caches	(NV-Insecure)	
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NVSleep: Using Non-Volatile Memory to 
Enable Fast Sleep/Wakeup of Idle Cores 

•  The	first	work	to	use	non-volaLlity	feature	of	STT-RAM	to	implement	

pipeline-level	checkpoinLng	

•  A	general	and	low	overhead	framework	for	reducing	energy	through	

exploiLng	short	idle	execuLon	phases	

•  Achieved	energy	reducLon	of	17-34%	with	less	than	3%	performance	and	
area	overheads	
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Outline 

• Background	
• Low-Power	Processor	Design	with	NVM	in	
High-Voltage	Domain	(NVSleep)	

• Low-Power	 Processor	 Design	 with	 NVM	
in	Low-Voltage	Domain	(Respin)	

• Security	Research	on	Processors	Equipped	
with	NVM	Caches	(NV-Insecure)	
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Respin: Rethinking Near-Threshold 
Multiprocessor Design with Non-Volatile Memory 

•  The	first	work	to	explore	the	use	of	non-volaLle	caches	in	near-threshold	
chip	mulLprocessors	

•  A	novel	architecture	designed	to	enhance	NT-CMP	performance	and	reduce	

energy	consumpLon	by	sharing	L1	caches	and	implemenLng	dynamic	core	

consolidaLon	mechanism	

•  Achieved	energy	reducLon	by	33%	and	improved	performance	by	11%	
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Low Voltage Operation 
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Voltage	(V)	

NT	
Vdd	

Nominal	
Vdd	
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Frequen
cy	

1	0.8	0.4	0.3	0.2	0	
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~1/100	

Designing Future Low-Power and Secure Processors with Non-Volatile Memory 
Xiang Pan (Ph.D. Dissertation Defense @ 03/03/17) 



•  Performance	degradaLon	

•  FuncLon	failure	

Challenges in Near-Threshold 
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Dynamic	and	Leakage	Power	Breakdown	for	a	64-Core	CMP	

dynamic-core	

dynamic-cache	

leakage-core	

leakage-cache	

•  Amplified	process	variaLon	

•  Leakage	power	dominaLon	

•  The	iniLal	idea	of	Respin	–	
Build	caches	in	NT-CMP	

with	“leakage-free”	non-
volaLle	memories	to	

reduce	power	consumpLon	

~39%	

~73%	

~35%	

Designing Future Low-Power and Secure Processors with Non-Volatile Memory 
Xiang Pan (Ph.D. Dissertation Defense @ 03/03/17) 



STT-RAM is Good Fit for NT-CMP 
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NT-CMP	 STT-RAM	

High	leakage	power	 Near-zero	leakage	power	

Low	operaLng	
frequency	

Long	latency	writes	

Large	numbers	of	
cores	requiring	high	

cache	capacity	

High	density	(~4x	denser	
than	SRAM)	

Unreliable	funcLonal	
units	

Robust	from	soi-errors	
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Respin Architecture 
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L3 Cache
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•  Cores	operate	at	NT-Vdd	rail	with	low	frequencies	
•  Caches	are	built	with	STT-RAM	and	operate	at	high-Vdd	rail	making	read	speed	

extremely	fast		

•  Clustered-CMP	with	fast	STT-RAM	read	enables	within-cluster	shared	L1	cache	

design,	removing	coherence	costs	
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Shared Cache Hierarchy 
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Dynamic Core Consolidation 
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System Firmware (ACPI)
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•  High	process	variaLon	and	
leakage	in	NT-CMP	lead	to	fast	
cores	more	energy-efficient	than	

slow	ones	
•  Upon	shared	cache	design,	
dynamically	consolidate	threads	
onto	efficient	cores	with	greedy	

search	can	further	save	energy	
•  Energy-per-instrucLon	used	as	
greedy	selecLon	metric	and	
instrucLon	count	used	as	

selecLon	interval	
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Methodology 
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Level	 Size	(mm²)	 Block	Size	 AssociaHvity	 Read/Write	
Ports	

L1I	(Private/Shared	
within	Cluster)	 16KB	(Private)/256KB	(Shared	within	

Cluster)	
32B	

2-way	

1/1	

L1D	(Private/Shared	
within	Cluster)	

4-way	

L2	(Shared	within	
Cluster)	

8MB	(Small)/16MB	(Medium)/32MB	
(Large)	

64B	 8-way	

L3	(Shared	within	
Chip)	

24MB	(Small)/48MB	(Medium)/
96MB	(Large)	

128B	 16-way	

Table	1.	Summary	of	Cache	Parameters.	

Vdd	Rail	 Area	
(mm²)	

Read/Write	
Latency	(ns)	

Read/Write	
Energy	(nJ)	

Leakage	Power	
(mW)	

SRAM	(16KB	×	16)	 Low	(0.65V)	
0.9176	

1.337	 0.002578	 573	

SRAM	(256KB)	
High	(1.0V)	

0.5336	 0.04241	 881	

STT-RAM	(256KB)	 0.2451	 0.3774/5.208	 0.02932/0.2093	 114	

Table	2.	Comparison	of	SRAM	vs.	STT-RAM	Technology	Parameters.	
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Methodology 
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CMP	Architecture	

Cores	 64	out-of-order	

Fetch/Issue/Commit	Width	 2/2/2	

Register	File	Size	 76	int,	56	fp	

InstrucLon	Window	Size	 56	int,	24	fp	

Reorder	Buffer	Size	 80	entries	

Load/Store	Queue	Size	 38	entries	

NoC	Interconnect	 2D	Torus	

Coherence	Protocol	 MESI	

Consistency	Model	 Release	Consistency	

Technology	 22nm	

NT-Vdd	 0.4V	(Core),	0.65V	(Cache)	

Nominal-Vdd	 1.0V	

Core	Frequency	Range	 375MHz	–	725MHz	

Median	Core	Frequency	 500MHz	

VariaLon	Parameters	

Vth	std.	dev./mean	(σ/μ)		 12%	(Chip),	10%	(Cluster)	

Table	3.	Summary	of	Experimental	Parameters.	

•  SimulaLon	Framework:	

•  SESC	for	architecture	simulaLon	

•  CACTI,	McPAT,	and	NVSim	for	

latency,	power,	energy,	and	area	
simulaLon	

•  Benchmarks:	

•  SPLASH2	and	PARSEC	

•  Main	Evaluated	ConfiguraLon:	

•  64-core	CMP	with	four	16-core	
clusters	

•  Medium	size	L2	and	L3	caches	

•  0.4ns	shared	L1	cache	read	latency	
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Power and Performance 
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Power	ReducHon	of	Proposed	Design	with	Three	L2/L3	Cache	Sizes	

leakage	 dynamic	

1.0	

0.936	

0.902	 0.891	

0.8	

0.85	

0.9	

0.95	

1	

1.05	

GEOMEAN	

N
or
m
al
iz
ed

	E
xe
cu
H
on

	T
im

e	

RelaHve	ExecuHon	Time	for	Medium	Cache	Size	

PR-SRAM-NT	 PR-SRAM-Nom	 SH-SRAM-Nom	 SH-STT	

~3%	
~14%	

~23%	

•  Respin	achieved	14%	power	reducLon	
and	11%	performance	improvement	
with	medium	sized	cache	
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Energy Consumption 
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•  For	medium	sized	cache,	Respin	achieved	22%	energy	savings	with	the	basic	shared	

STT-RAM	cache	design	plus	addiLonal	11%	with	core	consolidaLon	enabled	
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Energy	ConsumpHon	for	Different	Core	ConsolidaHon	
ConfiguraHons	with	Medium-sized	Cache	

PR-SRAM-NT	 SH-STT	 SH-STT-CC	 PR-STT-CC	 SH-STT-CC-OS	 SH-STT-CC-Oracle	

Designing Future Low-Power and Secure Processors with Non-Volatile Memory 
Xiang Pan (Ph.D. Dissertation Defense @ 03/03/17) 



Core Consolidation Analysis 
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•  In	most	cases	our	greedy	algorithm	matches	well	with	the	oracle	while	in	very	few	cases	sub-

opLmal	selecLon	becomes	the	barrier	to	slow	down	the	pace	of	our	greedy	mechanism	
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Sensitivity Studies 
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Outline 

• Background	
• Low-Power	 Processor	 Design	 with	 NVM	 in	
High-Voltage	Domain	(NVSleep)	

• Low-Power	 Processor	 Design	 with	 NVM	 in	
Low-Voltage	Domain	(Respin)	

• Security	 Research	 on	 Processors	 Equipped	
with	NVM	Caches	(NV-Insecure)	
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NV-Insecure: When Non-Volatile Caches Meet 
Cold Boot Attacks 
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•  The	first	work	to	examine	cold	boot	a"acks	on	non-	volaLle	caches	

•  A	comprehensive	algorithm	of	finding	AES	keys	in	cache	images	has	been	
developed	

•  Two	types	of	cold	boot	a"acks	have	been	performed	and	shown	to	be	

effecLve	on	non-volaLle	caches	

•  A	soiware-based	countermeasure	has	been	developed	and	proven	to	be	

effecLve	with	reasonable	overhead	



Advanced Encryption Standard (AES) 
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•  Symmetric	block	cipher	with	one	master	key	for	both	encrypLon	
and	decrypLon	operaLons	

•  Key	size	ranges	from	128-bit	(AES-128),	192-bit	(AES-192),	and	
256-bit	(AES-256)	

•  An	expanded	key	(aka.	AES	key	schedule,	176-byte	in	AES-128)	
must	be	generated	beforehand	using	the	original	key	

• Byte	subsLtuLon,	shii	row,	mix	column,	and	add	round	key	
operaLons	will	be	performed	during	encrypLon/decrypLon	



Cold Boot Attacks 
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•  Cooling	DRAM	to	a	certain	low	temperature	can	preserve	its	data	for	a	

short	duraLon	of	Lme	without	power	supply	

•  Examining	data	relaLonships	in	extracted	memory	image	can	idenLfy	

AES	keys	used	for	disk	encrypLon	algorithms	

•  Main	memory	based	cold	boot	a"acks	have	already	been	successfully	

conducted	on	desktop	and	mobile	computers	

Halderman	et	al.,	Lest	We	Remember:	Cold	Boot	A"acks	on	EncrypLon	Keys,	citp.princeton.edu/research/memory	



Current Countermeasures 
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•  Securing	data	at	the	desLnaLon	side	
•  Memory	encrypLon	technique	

•  Acceptable	at	main	memory	level	but	can	hardly	be	applied	to	
caches	because	of	its	high	performance	overhead	

• ProtecLng	data	from	the	source	side	

•  Keep	secrets	stored	in	CPU	registers,	caches,	and	other	processor	
internal	storage	during	system	execuLon	

•  Secret	info	can	sLll	be	fetched	into	caches	

•  A	subset	of	this	countermeasure	even	suggests	keeping	secrets	in	

CPU	caches	



Motivation 
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•  Industry	is	pushing	computers	with	NVMs	into	market	soon	

•  Aier	NVM	replaces	volaLle-RAM	in	computers,	cold	boot	a"acks	

will	be	much	easier	to	conduct	

•  Caches	are	highly	likely	to	be	replaced	with	NVM	in	the	future	

but	no	previous	work	studied	cold	boot	a"acks	on	caches	

•  A	few	countermeasures	even	suggest	keeping	secrets	in	caches	

•  All	in	all,	this	will	be	the	first	work	to	study	cold	boot	a"acks	on	
NVM	caches	



Threat Model 
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•  A"acker	has	physical	access	to	the	vicLm	device	

•  A"acker	has	necessary	equipments	to	extract	data	from	CPU	

caches	



Cache Aware AES Key Search Algorithm 
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•  Non-conLguous	
memory	space	

•  Incomplete	key	
schedules	



Cache Aware AES Key Search Algorithm 
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•  AES	implementaLon	

dependent	design	



Cache Aware AES Key Search Algorithm 
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Experimental Methodology 
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Sobware	ConfiguraHon	

Simulator	 gem5	

OS	 Ubuntu	Trusty	14.04	
64-bit	

Disk	EncrypLon	
Module	

dm-crypt	+	LUKS	

EncrypLon	Algorithm	 AES-XTS	with	128-bit	
key	

ApplicaLon	 SPEC	CPU2006	

ExecuLon	 1B	insts	to	run	

1M	insts	to	sample	



Attack Scenarios 
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• Random	InformaLon	HarvesLng	
•  ExecuLon	can	be	stopped	at	any	given	Lme	to	extract	secrets	from	
CPU	caches	

•  Targeted	Power-Off	A"ack	
•  Conduct	power-off	operaLon	on	vicLm	system	and	extract	secrets	
from	CPU	caches	

•  Two	Baselines	for	EvaluaLon	
•  System	without	Cryptographic	AcceleraLon	Support	(NoCrypto)	
•  System	with	Cryptographic	AcceleraLon	Support	(Crypto)	



Random Attack Analysis 
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•  Two	factors:	
•  Encrypted	Disk	Accesses	

•  Cache	EvicLons	



Random Attack Analysis 
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Power-Off Attack Analysis 

36	Designing Future Low-Power and Secure Processors with Non-Volatile Memory 
Xiang Pan (Ph.D. Dissertation Defense @ 03/03/17) 

•  Two	modes:	

•  Normal	Power-Off:	

poweroff	(-p)	

•  Force	Power-Off:	
poweroff	-f	



Power-Off Attack Analysis 
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Software-based Countermeasure 
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•  Key	idea:	Marking	secret	informaLon	as	uncacheable	



Countermeasure Analysis 
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•  EffecLveness	



Countermeasure Analysis 

40	Designing Future Low-Power and Secure Processors with Non-Volatile Memory 
Xiang Pan (Ph.D. Dissertation Defense @ 03/03/17) 

•  Performance	Overhead	
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Future Work in Reducing 
Countermeasure Overhead 
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•  Taking	advantage	of	volaLle	SRAM	write	buffers	equipped	
with	every	NVM	device	to	store	secret	informaLon	

•  Hardware-based	soluLon	
•  Require	hardware-soiware	co-design	(changing	ISA,	adding	
soiware	interface,	…)	

•  Ideally	will	exhibit	zero	performance	overhead	
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Questions? 

Thank	you!	
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•  Idle/leakage	power:	source	of	inefficiency	in	CMPs	

•  Expected	to	increase	in	future	technologies	

•  Cores	are	oien	idle,	wasLng	power	

•  Power	gaLng	can	help	
•  FuncLonal	units	with	li"le	or	no	states	(ALUs)	–	power	gaLng	OK	
•  Most	FUs	have	significant	states	(RF,	ROB,	…)	–	power	gaLng	expensive	

•  NVSleep	Idea:	non-volaLle	memory	can	enable	fast	micro-checkpoinLng	

•  Reduce	the	performance	overhead	of	power	gaLng	

•  Enable	power	gaLng	during	short	idle	intervals	(e.g.	stalls	on	LLC	misses)	

Motivation 
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Idle	Power	Breakdown	

Idle	(30%)	

AcLve	(70%)	

Shimpi	et	al.,	The	Haswell	Review:	
Intel	Core	i7-4770K	&	i5-4670K	
Tested,	www.anandtech.com	

Designing Future Low-Power and Secure Processors with Non-Volatile Memory 
Xiang Pan (Ph.D. Dissertation Defense @ 03/03/17) 



•  We	use	Spin	Transfer	Torque	RAM,	a	new	type	of	magneLc	memory	

•  STT-RAM	can	be	a	good	candidate	for	NVSleep	checkpoinLng	

•  STT-RAM	has	other	good	characterisLcs:	

•  ~4X	higher	density	than	SRAM,	be"er	scalability	

•  Infinite	write	endurance	

STT-RAM in NVSleep 
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NVSleep	checkpoinHng	

Non-volaLlity	

Low	latency	access	

Low	energy	

STT-RAM	

Long	data	retenLon	Lme	(as	long	as	10	years)	

Fast	read	(~0.9X	SRAM)	
Low	energy	read	(~0.7X	SRAM)	

!	
!	
!	

and	slow	write	(~	20X	SRAM)	
and	high	energy	write	

(~20X	SRAM)	
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•  NVSleep	leverages	STT-RAM	for	on-chip	storage	structures	

•  Write	latency-tolerant	units	(caches,	TLBs,	etc.)	are	implemented	with	STT-RAM	
(combined	with	SRAM	write	buffers	to	help	hide	long	latency	writes)	

•  Write	latency-sensiLve	units	(RF,	ROB,	etc.)	are	implemented	with	hybrid	SRAM/

STT-RAM	design	

NVSleep Framework 
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SRAM/STT-RAM hybrid Design 
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•  SRAM	for	primary	storage	

•  STT-RAM	shadow	of	idenLcal	size	
used	for	micro-checkpoinLng	

•  Banked	design	to	parallelize	

checkpoinLng	process	

SRAM	Master	 STT-RAM	Shadow	

ba
nk
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ba
nk
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ba
nk
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checkpoint	control	

Designing Future Low-Power and Secure Processors with Non-Volatile Memory 
Xiang Pan (Ph.D. Dissertation Defense @ 03/03/17) 



•  NVSleepMiss:	Hardware-driven	

•  Ideal	for	short	idle	events,	detected	by	hardware	
•  Our	implementaLon:	cores	sleep	on	LLC	misses	

•  NVSleepBarrier:	Soiware	API	
•  Exposes	NVSleep	to	the	system	soiware	

•  Can	be	used	by	the	OS	or	applicaLons	to	“suspend”	cores	quickly	
•  Ideal	for	soiware	observable	idle	events	such	as	blocking	on	synchronizaLon	
(e.g.	barriers,	locks,	etc.)	

•  Our	implementaLon:	cores	sleep	when	blocked	on	barriers	

NVSleep Implementation 
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1.  LD	issued,	missed	in	L1	

2.  LLC	miss	reported	by	LLC	

3.  Sleep	signal	sent	to	Core	0	

4.  CheckpoinLng	starts	

5.  Core	0	goes	to	sleep	aier	stalls	

6.  Missing	data	returns	

7.  Wakeup	signal	sent	to	Core	0	

NVSleepMiss: Hardware-driven 
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•  CheckpoinLng	and	wakeup	of	cores	are	coordinated	by	the	L1	cache	

controller	of	each	core	

•  Hardware-driven	checkpoinLng/wakeup	sequence:	

CKP	

Sleep	

1	 2	
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5	

3	 6	

7	

Designing Future Low-Power and Secure Processors with Non-Volatile Memory 
Xiang Pan (Ph.D. Dissertation Defense @ 03/03/17) 



•  Expose	micro-checkpoinLng	system	to	soiware	through	API	

•  Dedicated	sleep(0xADDR)	instrucLon	

•  When	executed	on	a	core	–	it	will	shut	down	

•  Wakeup	triggered	by	another	core	through	write	operaLon	to	0xADDR	

NVSleepBarrier: Software API 
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•  Example	applicaLon	in	barrier:	

•  All	but	last	thread	–	sleep(&sense)	

•  Last	thread	writes	to	sense,	
wakes-up	all	other	threads	

void	barrier(int	count,	int	sense,	int	num_threads)	
{	
								int	local_sense;	
								local_sense	=	!sense;	

								if	(count	!=	(num_threads	-	1))	{	
																while	(local_sense	!=	sense)	{	
																								sleep(&sense);	
																}	
								}	
								else	{	
																count	=	0;	
																sense	=	local_sense;	
								}	
}	
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•  Soiware-driven	checkpoinLng/wakeup	sequence:	

NVSleepBarrier: Software API 
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2.  “&sense”	reserved	in	Core	0	L1	
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•  	SimulaLon	Framework:	

•  		SESC	for	architecture	simulaLon	

•  		CACTI,	McPAT,	and	NVSim	for	power,	

energy,	and	area	simulaLon	

•  	Benchmarks:	

•  		Single-threaded:	SPEC	CPU2000	

•  		MulL-threaded:	SPLASH2	and	PARSEC	

•  Main	Evaluated	ConfiguraLon:	

•  		CMP	with	64	out	of	order	cores	

Methodology 
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•  8-bank	design	SRAM/STT-RAM	hybrid	structures	
•  3.3ns	STT-RAM	write	latency	for	checkpoinLng	
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NVSleepMiss:	23%	(SPECFP)	and	17%	(SPECINT)	energy	reducLon	

NVSleepMiss Energy Reduction 
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NVSleepBarrier Energy Reduction 
NVSleepBarrier:	34%	energy	reducLon	for	apps	with	>10	barriers	
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Sensitivity Studies 
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