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ABSTRACT

Non-volatile memories such as Spin-Transfer Torque Random Access Memory

(STT-RAM), Phase Change Memory (PCM), Resistive Random Access Memory

(ReRAM), etc. are emerging as promising alternatives to DRAM and SRAM. These

new memory technologies have many exciting characteristics such as non-volatility,

high density, and near-zero leakage power. These features make them very good can-

didates for future processor designs in the power-hungry big data era. STT-RAM,

a new generation of Magnetoresistive RAM, in particular is an attractive class of

non-volatile memory because it has infinite write endurance, good compatibility with

CMOS technology, fast read speed, and low read energy. With its good read per-

formance and high endurance, it is feasible to replace SRAM structures on processor

chips with STT-RAM. However, a significant drawback of STT-RAM is its higher

write latency and energy compared to SRAM.

This dissertation first presents several approaches to use STT-RAM for future low-

power processor designs across two different computing environments (high voltage

and low voltage). Overall our target is to take advantage of the benefits of STT-RAM

over SRAM to save power and at the same time try the best to accommodate STT-

RAM’s write drawbacks with novel solutions. In high voltage computing environ-

ment, we present a low-power microprocessor framework – NVSleep, that leverages

STT-RAM to implement rapid checkpoint/wakeup of idle cores to save power. In
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low voltage computing environment, we propose an architecture - Respin, that con-

solidates the private caches of near-threshold cores into unified L1 instruction/data

caches that use STT-RAM to save leakage power and improve performance. On top of

this shared L1 cache design, we further propose a novel hardware virtualization core

management mechanism to increase resource efficiency and save energy. Although

the non-volatility feature of non-volatile memories can be leveraged to build power-

efficient designs, it also brings in security concerns as data stored in these memories

will be persistent even after system power-off. In order to address this potential secu-

rity issue, this dissertation deeply studies the vulnerabilities of non-volatile memory

as processor caches when exposed to “cold boot” attacks and then proposes an effec-

tive software-based countermeasure to eliminate this security threat with reasonable

performance overhead.
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CHAPTER 1

Introduction

Non-volatile memory (NVM) such as Spin-Transfer Torque Random Access Mem-

ory (STT-RAM), Phase Change Memory (PCM), Resistive Random Access Memory

(ReRAM), etc. is a promising candidate for replacing traditional DRAM and SRAM

memories for both off-chip and on-chip storage [47]. NVMs in general have several

desirable characteristics including non-volatility, high density, better scalability at

small feature sizes, and low leakage power [26,79,85]. The semiconductor industry is

investing heavily in NVM technologies and they are getting close to integrating them

into products in the near future. Companies such as Everspin [19] and Crossbar [13]

are focused exclusively on NVM technologies and have produced NVM chips that are

being sold today. A joint effort from Intel and Micron has yielded 3D XPoint [49],

a new generation of NVM devices with very low access latency and high endurance,

expected to come to market this year. Hewlett-Packard Enterprise’s ongoing “The

Machine” project [31] is also set to release early this year computers equipped with

memristor technology (also known as ReRAM) as part of enabling highly scalable

memory subsystems. The industry expects non-volatile memory to replace DRAM

off-chip storage in the near future, and SRAM on-chip storage in the medium term.
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STT-RAM in particular is an attractive NVM technology with several unique

properties including fast read speed, low read energy, good compatibility with CMOS

technology, and unlimited write endurance [15,26,75,86]. These characteristics make

it a potential candidate for replacing SRAM structures on processor chips. The

first part of this dissertation presents NVSleep, a low-power microprocessor frame-

work that leverages STT-RAM to implement fast checkpointing that enables near-

instantaneous shutdown of cores without loss of the execution state. NVSleep stores

almost all processor state in STT-RAM structures that do not lose content when

power-gated. Memory structures that require low-latency access are implemented in

SRAM and backed-up by “shadow” STT-RAM structures that are used to implement

fast checkpointing. This enables rapid shutdown of cores and low-overhead resump-

tion of execution, which allows cores to be turned off frequently and for short periods

of time to take advantage of idle execution phases to save power. We present two im-

plementations of NVSleep: NVSleepMiss which turns cores off when last level cache

misses cause pipeline stalls and NVSleepBarrier which turns cores off when blocked

on barriers. Evaluation shows significant energy savings for both NVSleepMiss and

NVSleepBarrier with a small performance overhead.

The second part of this dissertation looks into combining STT-RAM with multi-

processors operating in the near-threshold voltage range. Near-threshold computing

is emerging as a promising energy-efficient alternative for power-constrained environ-

ments. Unfortunately, aggressive reduction in supply voltage to the near-threshold

range, albeit effective, faces a host of challenges. This includes higher relative leakage

power and high error rates, particularly in dense SRAM structures such as on-chip

caches. This part of the dissertation presents Respin, an architecture that rethinks
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the cache hierarchy in near-threshold multiprocessors. Our design uses STT-RAM to

implement all on-chip caches. STT-RAM has several advantages over SRAM at low

voltages including low leakage, high density, and reliability. The design consolidates

the private caches of near-threshold cores into shared L1 instruction/data caches or-

ganized in clusters. We find that our consolidated cache design can service most

incoming requests within a single cycle. We demonstrate that eliminating the coher-

ence traffic associated with private caches results in performance boost. In addition,

we propose a hardware-based core management system that dynamically consolidates

virtual cores into variable numbers of physical cores to increase resource efficiency.

We demonstrate that this approach can save additional energy over the baseline while

running a mix of benchmark applications.

Although systems with non-volatile memory (e.g. STT-RAM) are not yet com-

mercially available, industry expects non-volatile memory (NVM) technologies to be

deployed in production systems in the near future. As such, it is crucial to study the

security vulnerabilities of NVM-based computer systems before they are deployed

widely. The last part of this dissertation shows that NVMs present new security

challenges. In particular, we show that NVM caches are vulnerable to so-called “cold

boot” attacks. The original cold boot attacks have demonstrated that once an ad-

versary has gained physical access to a victim computer, he/she could extract the

physical DRAM modules and re-plug them into another platform where their content

can be read. In contrast to DRAM, SRAM caches are less vulnerable to cold boot

attacks, because SRAM data is only persistent for a few milliseconds even at cold

temperatures. Therefore, SRAM caches have been generally assumed to be within

the security domain of a secure processor because their volatility made these attacks
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very challenging. Thus, caches are often used to store sensitive information such as

cryptographic keys in various software approaches to defeating cold boot attacks.

Our study explores cold boot attacks on NVM caches and defenses against them.

Because removing the processor from a system no longer erases the content of the on-

chip NVM memory, sensitive information becomes vulnerable. Particularly, this work

demonstrates that hard disk encryption keys can be extracted from the NVM cache

in cold boot attacks. Multiple attack scenarios are examined in order to evaluate the

probability of successful attacks with varying system activities and attack methods.

We particularly demonstrate a reproducible attack scenario with very high probability

of success. Beyond attack demonstration, we also propose an effective software-based

countermeasure. Results show that this countermeasure can completely eliminate

the vulnerability of NVM caches to cold boot attacks with a reasonable performance

overhead. We hope our work can draw the industry’s attention to this specific secu-

rity vulnerability of NVM caches, and promote integration of countermeasures into

hardware and software systems where NVM caches will be deployed.

The rest of this dissertation is organized as follows: Chapter 2 provides required

preliminaries related to our work. Chapter 3 details the NVSleep framework, Chap-

ter 4 describes the Respin architecture, and Chapter 5 presents our study on NVM

security. Related work will be discussed in Chapter 6. Finally, conclusions will be

drawn in Chapter 7.
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CHAPTER 2

Background

2.1 STT-RAM

STT-RAM memory uses Magnetic Tunnel Junction (MTJ) as the basic storage

unit. An MTJ consists of two ferromagnetic layers – a reference layer and a free layer

that are divided by a tunnel barrier (MgO) as shown in Figure 2.1. Each layer is

associated with a magnetic field where the direction can only be changed in the free

layer by passing a large current through the MTJ device. The direction of the free

layer relative to the reference layer provides the storage functionality of the MTJ-

based memory cell. If the magnetic direction of the free layer matches that of the

reference layer, the MTJ cell is said to be in “parallel” state (2.1a). In the parallel

state the resistance of the MTJ is low and represents a logical “0”. If the magnetic

direction of the free layer is reversed, the MTJ is said to be in an “antiparallel” state

in which the MTJ has high resistance and represents a logical “1” (2.1b).

The most common STT-RAM cell design is the 1-transistor-1-MTJ (1T-1MTJ)

structure shown in Figure 2.2. Each MTJ unit is controlled by a single CMOS tran-

sistor connected to the word line (WL) select signal. A source line (SL) is connected

to the source of the control transistor and a bit line (BL) is connected to the free

5



(a) parallel (0) (b) antiparallel (1)

Figure 2.1: Basic structure of a Magnetic Tunnel Junction (MTJ) cell in the (a) parallel
and (b) antiparallel states.

layer of the MTJ. A read operation involves applying a small current between the SL

and BL lines allowing a sense amplifier to detect the drop in voltage over the MTJ

which is affected by its resistance. A “0” will be registered for a low resistance state

and “1” for a high resistance state. Writing into an STT-RAM cell requires changing

the direction of the magnetic field in the free layer and therefore necessitates a large

electrical charge to pass through the device. This is achieved by applying higher cur-

rents for longer duration. As a result, write operations in STT-RAM are both slower

and consume more energy compared to SRAM. A study by Guo et al. [26] suggests

STT-RAM to be competitive with SRAM in read latency and energy. However, the

write latency and energy were found to be much higher than SRAM when using small
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structure sizes. This gap between STT-RAM and SRAM in write characteristics sig-

nificantly diminishes when the storage structure size becomes large, thus making the

use of STT-RAM a feasible technology for modern microprocessors in meeting cache

capacity trends.

Figure 2.2: 1T-1MTJ memory cell.

2.2 Impact of Process Variation on Near-Threshold CMPs

A growing challenge chip designers face with deep submicron technology is pro-

cess variation. Process variation effects are introduced to microprocessors during

the manufacturing stage and can occur at different levels, including: wafer-to-wafer

(W2W), die-to-die (D2D), and within-die (WID). Random effects such as fluctua-

tions in dopant densities impact the effective length (Le f f ) and threshold voltage (Vt)

parameters of transistors which play a key role in controlling device switching speeds.

The correlation between Vdd and transistor gate delays as indicated by the alpha

power model [67] renders processor cores increasingly susceptible to low-voltage oper-

ation. Figure 2.3 shows core-to-core variation data reproduced from [50] for a 32-core

CMP at nominal and near-threshold voltages. A dramatic increase in variation can
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Figure 2.3: Core-to-core frequency variation at nominal and near-threshold Vdd, repro-
duced from [50].

be observed from 4.4% frequency standard deviation divided by the mean (σ/µ) at

nominal Vdd (900mV) to 30.6% σ/µ at near-threshold (400mV). With this level of

variation a subset of cores become twice as fast as others within the same die once

supply voltage transitioned to the near-threshold range.

2.3 Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) [3] is a symmetric block cipher which

encrypts or decrypts a block of 16 bytes of data at a time. Both encryption and

decryption use the same secret key. The commonly used AES key size is either

128-bit (AES-128), 192-bit (AES-192), or 256-bit (AES-256). Before performing any

encryption/decryption operations, the secret key must be expanded to an expanded

key (also known as a key schedule) consisting of individual subkeys that will be used
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Figure 2.4: AES-128 key schedule with details on key expansion.

for different internal rounds of the AES (Rijndael) algorithm. The key expansion

process is shown in Figure 2.4. The key schedule starts with the original secret key,

which is treated as the initial subkey. The following subkeys (also known as round

keys) are computed from the previously generated subkeys using publicly known

functions such as Rot-Word, Sub-Word, Rcon, EK, and K defined in the key expansion

algorithm [8]. In each round of the key generation, the same sequence of functions

will be executed. Each newly generated subkey will have the same size, e.g. 16 bytes

in AES-128. This process repeats a certain number of rounds (e.g. 10 rounds in

AES-128) until the expanded key is completely generated. Each subkey from the

expanded key will then be used in separate rounds of AES encryption or decryption

algorithms.

2.4 ARM’s Cryptographic Acceleration

Many of today’s processors include vectorization support in the form of Single

Instruction Multiple Data (SIMD) engines. The popularity of this hardware support

stems from the multitude of applications that are suitable for vectorization including

cryptography, image processing, and speech recognition to name a few. In ARM

processors, the SIMD engine is codenamed NEON and was first introduced as part
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of the ARMv7 architecture. Later on, additional enhancements were debuted with

the ARMv8 architecture. In the ARMv8 architecture, NEON consists of 32 registers

(v0 - v31) where each register is 128-bit wide. As such, each NEON register can

conveniently load a 128-bit AES key or a full round of the AES key schedule into a

single register obviating the need for multiple accesses to the cache or the memory

subsystem. In addition, ARMv8 introduces cryptographic extensions that include

new instructions that can be used in conjunction with NEON for AES, SHA1, and

SHA2-256 algorithms. In the case of AES, the available instructions are: AESD for

single round decryption, AESE for single round encryption, AESIMC for inverse mix

columns, and VMULL for polynomial multiply long. In this dissertation, we explore

the use of the NEON engine, in addition to the ARMv8 cryptographic extensions in

order to conduct a wholistic study that reflects side channel vulnerabilities associated

with encrypted storage when using state-of-the-art ARM processors.
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CHAPTER 3

NVSleep: Using Non-Volatile Memory to Enable Fast
Sleep/Wakeup of Idle Cores

3.1 Introduction

Power consumption is a first-class constraint in microprocessor design. The in-

creasing core count in chip multiprocessors is rapidly driving chips towards a new

“power wall” that will limit the number of compute units that can be simultane-

ously active. Traditional power management techniques such as dynamic voltage and

frequency scaling (DVFS) are becoming less effective as technology scales. Supply

voltage scaling has slowed significantly limiting the range and effectiveness of DVFS.

Techniques like clock gating are not affected by voltage scaling but they cannot con-

trol leakage power which is expected to increase in future technologies [36]. Power

gating, a technique that cuts power supply to functional units can be an effective

mechanism for saving both leakage and dynamic power. Unfortunately power gating

leads to the loss of data stored in the gated units. Stateless units such as ALUs can

be restarted with little overhead. However, units with significant storage such as reg-

ister files, caches, and other buffers and queues hold large amounts of data and state
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information. Restoring that information following a shutdown incurs a significant

performance overhead.

This work proposes NVSleep, a low-power microprocessor framework that lever-

ages STT-RAM to implement rapid shutdown of cores without loss of execution state.

This allows cores to be turned off frequently and for short periods of time to take

advantage of idle execution phases to save power. We present two implementations of

NVSleep: NVSleepMiss which will turn cores off when last level cache (LLC) misses

cause pipeline stalls and NVSleepBarrier which will turn cores off when blocked on

barriers.

In both NVSleep implementations all memory-based functional units that are

not write-latency sensitive (such as caches, TLBs, and branch predictor tables) are

implemented using STT-RAM. These structures do not lose content when power-

gated. Other on-chip structures that require low-latency writes are implemented

using SRAM and backed-up by shadow STT-RAM structures. A fast checkpointing

mechanism stores modified SRAM content into STT-RAM. After the content is saved,

the entire structure can be power-gated. When power is restored, the content of the

SRAM master is retrieved from the non-volatile shadow. This allows rapid shutdown

of cores and low-overhead resumption of execution when cores are powered back up.

Evaluation using SPEC CPU2000, PARSEC, and SPLASH2 benchmarks running

on a simulated 64-core system shows average energy savings of 21% for NVSleepMiss

in SPEC2000 benchmarks and 34% for NVSleepBarrier in high barrier count multi-

threaded workloads from PARSEC and SPLASH2 benchmarks. The energy savings

are achieved with a very small performance overhead.

Overall, this work makes the following contributions:
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• To the best of our knowledge, NVSleep is the first work to take advantage

of the non-volatility feature of STT-RAM to implement rapid pipeline-level

checkpointing.

• NVSleep proposes a general and low overhead framework for reducing energy

consumption by exploiting short idle execution phases.

• NVSleep is also the first checkpointing framework that is sufficiently fast to

allow cores to be shutdown during LLC misses.

3.2 NVSleep Framework Design

NVSleep improves microprocessor energy efficiency by rapidly turning off cores

during idle periods and quickly restoring them to full activity when work becomes

available. NVSleep is designed to both checkpoint state very quickly and restore

execution almost instantly after the core is turned on, without requiring the flushing

and refilling of the pipeline. This allows NVSleep to take advantage of short idle

execution phases such as those caused by misses in the last level cache.

The NVSleep framework uses two designs for on-chip memory structures. Storage

units that are less sensitive to write latency – such as caches and branch predictor

tables – are implemented with non-volatile STT-RAM equivalents. When a core is

powered off, these units will not lose state. In order to improve the write performance

of STT-RAM structures, especially in the presence of bursty activity, we add small

SRAM write buffers. A similar optimization was introduced by prior work [26, 74].

Memory structures that are more sensitive to write latency and are frequently

updated in the critical path of the execution (such as Register File, Reorder Buffer,
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Figure 3.1: SRAM memory structure with STT-RAM backup.

etc.) are implemented using a hybrid SRAM/STT-RAM design. Figure 3.1 illus-

trates this design. The primary storage elements are implemented using SRAM. The

SRAM “Master” banks are backed-up using STT-RAM “Shadow” arrays of equal

size. When a checkpoint is initiated, the SRAM entries that have been updated since

the last checkpoint are transferred to the STT-RAM Shadow. To speed up the check-

pointing process, all hybrid memory structures are banked, allowing all banks to be

checkpointed in parallel. Since banking introduces additional area/power overheads,

we experiment with various banking options to determine the optimal configuration.

To reduce overhead, the shadow and master banks share row decoders. This is possi-

ble because during checkpointing and restore the same rows are being accessed in both

the master and the shadow. The checkpoint is coordinated by control logic associated

with each hybrid structure. The control logic generates addresses for the checkpoint
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NVSleep Core Units Technology
All Caches STT-RAM
I-TLB and D-TLB STT-RAM
Branch Prediction Table STT-RAM
Register File SRAM + STT-RAM Shadow
Instruction Window SRAM + STT-RAM Shadow
Reorder Buffer SRAM + STT-RAM Shadow
Load/Store Queue SRAM + STT-RAM Shadow
Pipeline Registers SRAM + STT-RAM Shadow
All Logic CMOS

Table 3.1: Technology choices for NVSleep structures.

and restore sequence and checks and updates “modified” bits used to identify blocks

that have been updated since the last checkpoint.

All pipeline registers outside in the processor are implemented using CMOS flip-

flops and backed-up with STT-RAM shadows. Their content is checkpointed in par-

allel in a single write cycle making banking unnecessary. For completeness, Table

3.1 enumerates the technologies used in the principal components of the NVSleep

framework.

3.2.1 Checkpointing Control

NVSleep controls checkpointing, power-down, and wakeup of cores in a distributed

fashion across the chip. It relies on the L1 cache controller of each core to help

coordinate both the sleep and wakeup process. NVSleep uses two mechanisms for

triggering the sleep sequence: one that is entirely hardware-initiated and managed,

and one that uses a software API. The hardware-driven mechanism is appropriate for

exploiting idle phases caused by events that can be easily identified by the hardware

– such as misses in the last level cache.
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The software API can be used by the system to request the shutting down of

cores. The API relies on a dedicated sleep() instruction associated with a reserved

memory address 0xADDR that is tracked by the cache controller. The instruction can

be used by the compiler or programmer when an idle execution phase is expected.

For instance, a core can be shut down while it is blocked on a barrier, during long

latency I/O transfers, or while it is waiting for a lock to be released.

3.2.2 Wakeup Mechanism

Wakeup mechanisms are based on the L1 cache controllers of each core to co-

ordinate the wakeup processes. The cache controllers are not power gated and are

therefore available to initiate and coordinate wakeup events. These events include

returning misses or wakeup messages from other cores.

For the hardware-initiated sleep, if the sleep event has been triggered by an LLC

miss, the cache controller wakes up the core once the missing data makes its way

to the L1. The wakeup of a core that was explicitly shut down with the sleep()

instruction has to be initiated by another core or service processor. The wakeup of

a core is triggered by writing to the sleep 0xADDR address associated with that core.

An update or invalidate message for that address will direct the cache controller of

the sleeping core to start waking up.

The wakeup overhead depends on how quickly the core can be brought back online

and have its state restored. Bringing a system online after sleep can cause ringing

in the power supply, which can lead to voltage droops. To prevent large droops we

gradually ramp-up core wakeup. In the first phase of wakeup no computation is

performed to allow the supply lines to settle. In the second phase, checkpointed data
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is restored from shadow STT-RAM structures. Finally, normal execution is resumed.

More importantly, we do not allow multiple cores to wakeup simultaneously, limiting

the current ramp-up to 1/N of the chip maximum, where N is the number of cores.

3.3 NVSleep Framework Implementation

We developed two applications of the NVSleep framework. The first, which we

call NVSleepMiss is hardware-controlled and shuts down cores that block on misses in

the last level cache. The second, which we call NVSleepBarrier, is software-controlled

and turns off cores that are blocked on barrier synchronization.

3.3.1 NVSleepMiss

Last level cache misses can lead to hundreds of cycles of stalled execution due to

long latency memory accesses. Even though out-of-order processors can hide some

of that latency, pipelines will eventually stall when independent instructions are no

longer available. Even though stalled cores don’t consume as much power as active

cores, their idle power is still significant. For instance, modern Intel processors idle

at anywhere between 10W and 50W [34]. NVSleepMiss addresses this inefficiency.

NVSleepMiss requires identification and tracking of misses in the last level cache.

For this purpose we augment the miss handling status register (MSHR) of the L1

cache controller. We add two new fields to the standard MSHR design, as shown

in Table 3.2. The first field, labeled “LLC Miss”, is a one-bit tag used to indicate

whether this L1 cache miss ends up missing in the last level cache as well. This tag

is used to decide when a core should be asked to sleep. The second field is “Pending

LD” which is used to keep track of other L1 loads that might still be pending when

the core shuts down.
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Address Type/Misc. LLC Miss Pending LD
0xAA76...80 ... 0 0
0xC342...F7 ... 1 0
0xFE34...25 ... 0 1

Table 3.2: NVSleep MSHR with additional fields.

Core N
L1

CTRL

L2 
CacheCore 0

L1

CTRL

1 LD(0x00FF) 2 LLCMiss(0x00FF)

3 SHTDWN 4 Data(0x00FF)

5 WAKEUP
......

0x00FF
MSHR

1

Figure 3.2: NVSleepMiss hardware-initiated sleep and wakeup.

Figure 3.2 illustrates the steps involved in the NVSleepMiss shutdown and wakeup.

In this example a load request misses in the L1 cache in step ..1 . The controller of

the last level cache informs the L1 cache controller of an LLC miss event in step ..2 .

The L1 cache controller will find the related entry in the MSHR table and update its

“LLC Miss” field to 1. If there are no other pending LLC misses, a shutdown signal

will be sent to the core (step ..3 ).

A core initiate the shutdown sequence upon receipt of a sleep signal from the cache

controller. To ensure the core wakes up in a consistent state, all instructions that

follow the LLC miss in program order are allowed to complete and are retired from the
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reorder buffer. Any instructions that are still “in-execution” (meaning they occupy

the execution cluster) are allowed to complete and no new instructions are dispatched.

The checkpointing sequence begins as soon as the core receives the sleep signal and

takes place in parallel with the draining of the execution pipeline. Only SRAM/STT-

RAM hybrid structures require explicit checkpointing. The checkpointing control

unit copies all modified entries in the SRAM section to STT-RAM. Once the pipeline

is drained, a second checkpointing phase is initiated to save any modified entries still

remaining (such as those modified while draining the execution cluster).

While draining the execution pipeline after receiving the sleep signal the core

could still send load requests to the cache. The core does not need to wait for these

loads to be serviced in case they miss in the L1. The cache controller will keep track

of what requests have completed while the core is sleeping using the “Pending LD”

field of the MSHR. All load requests in the MSHR that are marked as “Pending LD”s

will be re-issued to the cache by the cache controller after the core wakes up. This

ensures the latest copy of the data is supplied to the core after wakeup. Only loads

need to be tracked because stores can complete while the processor is sleeping and

do not require any data to be sent to the core.

If data arrives at the L1 from a lower-level cache while the core is sleeping, that

data will be written into the cache. If the data corresponds to a load request, the

associated MSHR “Pending LD” field will be set to 1. If this is the last pending LLC

miss, a wakeup signal will be sent to wake up the sleeping core. This is illustrated

by steps ..4 and ..5 in Figure 3.2. Otherwise, the “LLC Miss” tag will be set to 0

but no wakeup signal will be generated. This is because other LLC misses are still

pending so there is no reason to wake up the core just yet. After the core is woken
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up, all pending loads in the MSHR table will be re-issued to the L1 cache. To avoid

a deadlock, these re-issued requests will not ask the processor to sleep, even if they

result in an LLC miss.

In the NVSleep framework the cache controller of a sleeping core is never shut

down. This allows the cache controller to initiate the wakeup process. It also ensures

that all coherence requests continue to be served even when the core is sleeping. As

a result, no changes to the coherence protocol are needed.

3.3.2 NVSleepBarrier

Parallel applications often use software barriers to coordinate execution of multiple

threads. These threads are sometimes unbalanced for algorithmic or runtime-related

reasons. As a result many cores may end up spending a significant portion of time

idle while waiting for slow threads to reach barriers. NVSleepBarrier addresses this

inefficiency by shutting down cores blocked on barrier synchronization.

The NVSleepBarrier implementation uses the NVSleep API through the sleep(0xADDR)

instruction. The instruction is treated like a special load instruction that reads from

the 0xADDR address. Figure 3.3 illustrates this process. When the sleep(0xADDR)

instruction is executed, a load from address 0xADDR is sent to the cache ..1 . The cache

allocates a line for the data at 0xADDR and marks it as reserved by setting a dedicated

bit in the tag ..2 . This reserved address will be used to trigger the wakeup process.

The sleep() instruction also acts as a memory fence instruction, not allowing

any memory access reordering with respect to the load to address 0xADDR. This will

ensure that when the sleep() instruction retires, there will be no pending loads or

stores in the cache that follow the sleep() instruction in program order. This will
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Core N
L1

CTRL

L2 
CacheCore 0

L1

CTRL

1  sleep(0xADDR)

......

0xADDR r2

3   ST(0xADDR)

4   INV(0xADDR)
5 WAKEUP

Figure 3.3: NVSleepBarrier software-initiated sleep and wakeup.

allow the core to go to sleep as soon as the sleep() instruction retires and no loads

will have to be re-issued when the core wakes up.

With this instruction in place, NVSleepBarrier requires minimal changes to the

standard software barrier implementation. Figure 3.4 shows code for the implementa-

tion of NVSleepBarrier in a generic sense-reversing barrier. The sleep() instruction

is executed by threads that block on the barrier. The global “sense” variable address

is passed as a parameter to the sleep() instruction. As a result, the “sense” variable

becomes the wakeup trigger for all the sleeping cores. Since threads that block on the

barrier will only read the “sense” variable, they will not trigger a wakeup. The last

thread to reach the barrier will follow the else path through the code and will write to

the “sense” variable, inverting its direction. The write will also trigger an “invalidate”

message to the caches of all blocked cores. This is illustrated in Figure 3.3 by steps

..3 and ..4 . These trigger messages will wake up the sleeping cores, allowing them to

resume execution ..5 .
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void barrier(int count, int sense, int num_threads)
{

int local_sense;
// Each core toggles its own sense.
local_sense = !sense;
if(count != num_threads -1) {

// Not the last thread , block.
while(local_sense != sense) {

// NVSleep instruction , with sense as
// wakeup trigger.
sleep(&sense);

}
} else {

// Last thread in the barrier.
count = 0;
// By writing to the sense variable
// blocked cores are woken up and
// subsequently released from barrier.
sense = local_sense;

}
}

Figure 3.4: NVSleepBarrier implementation.

3.4 Evaluation Methodology

We modeled a 64-core CMP in 32nm technology. Each core is a dual-issue out-of-

order architecture. We used SESC [63] to simulate the baseline SRAM-based CMP as

well as the NVSleep framework. Table 3.3 summarizes the architectural parameters

used in our simulations. We used CACTI [57] to extract energy per access for all

SRAM memory structures including register file, reorder buffer, instruction window,

etc. CACTI was also used to model the energy and area overhead for the banked

SRAM memory structures (hybrid register file and reorder buffer, etc.).

For modeling STT-RAM structures we used data from [26] for the access latency

and energy, and NVSim [16] to estimate chip area overhead. We also modeled leakage

power based on estimated unit area and technology (CMOS vs. STT). We plugged
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CMP Architecture
Cores 64, 32, and 16 out-of-order
Fetch/Issue/Commit Width 2/2/2
Register File 76 int, 56 fp
Instruction Window 56 int, 24 fp
L1 Data Cache 4-way 16KB, 1-cycle access
L1 Instruction Cache 2-way 16KB, 1-cycle access
Shared L2 8-way 2MB, 12-cycle access
Main Memory 300 cycle access latency
STT-RAM Read Time 1 cycle
STT-RAM Write Time 10 cycles
SRAM Read/Write Time 1 cycle
STT-RAM Read Energy 0.01pJ/bit
STT-RAM Write Energy 0.31pJ/bit
SRAM Read/Write Energy 0.014pJ/bit
Core Wakeup Time 30 cycles (10ns)
Coherence Protocol MESI
Technology 32nm
Vdd 1.0V
Clock Frequency 3GHz

Table 3.3: Summary of the experimental parameters.

these energy numbers into the activity model of the SESC simulator to obtain power

consumption and energy.

We ran benchmarks from the SPEC CPU2000, SPLASH2, and PARSEC suites.

The benchmark sets include single-threaded and multi-threaded benchmarks. Some

parallel benchmarks have heavy barrier activity while others use barriers sporadically

or not at all.

3.5 Evaluation

We evaluate the energy and performance implications of the two implementations

of NVSleep: NVSleepMiss and NVSleepBarrier. We also evaluate the time and energy

cost of checkpointing and show some sensitivity analysis results. We compare NVSleep
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with a baseline system (SRAM Baseline) in which all memory structures are built

with SRAM. The baseline system employs clock-gating of idle functional units to

reduce power.

3.5.1 Application Idle Time Analysis

For the purpose of this analysis we define idle time as cycles in which no instruc-

tion is retired and no instruction is in execution in a functional unit. During those

cycles the processor is virtually stalled. Figure 3.5 shows the percentage of idle time

in the total execution time for single-threaded benchmarks. The large number of

misses in memory-bound applications like mcf, equake, mgrid, and swim leads to idle

cycle counts that exceed 50%. Compute-bound applications such as bzip2 on the

other hand have very little idle time. We expect NVSleepMiss to benefit memory-

bound applications, with little or no benefit to compute-intensive applications that

experience relatively few misses.

For multi-threaded applications, in addition to looking at pipeline stalls due to

LLC misses, we also examine idle time spent by cores blocked on barriers. The

idle time relative to the total execution time broken down into pipeline stalls and

barrier blocked time is shown in Figure 3.6. We find that for the multi-threaded

applications we examine, stalls due to LLC misses account for very small fraction of

execution time (less than 2% on average). The amount of idle time spent in barriers

depends on two factors: the number of barriers and the level of imbalance between

work done by individual threads. Applications with large numbers of barriers such as

streamcluster or with significant imbalance such as lu and fluidanimate spend up to

89% of their execution time idling inside barriers. ocean, on the other hand, is stalled
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Figure 3.5: Idle fraction of the execution time for single-threaded benchmarks.
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Figure 3.6: Idle fraction of the execution time for multi-threaded benchmarks.

only about 4.7% of its time, even though it runs through about 900 dynamic barrier

instances. This is because ocean is very balanced, with threads reaching barriers

almost simultaneously and leaving them rapidly. We expect unbalanced applications

to benefit most from NVSleepBarrier. Naturally, benchmarks that use no barriers

such as dedup will see no benefit from NVSleepBarrier.

3.5.2 NVSleep Energy Savings

Figure 3.7 shows the energy consumption for NVSleepMiss relative to the SRAM

baseline for single-threaded benchmarks. Applications with high number of misses

and frequent stalls benefit greatly from NVSleepMiss. For example, mcf with the

longest idle time achieves 54% energy reduction using NVSleepMiss compared to
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Figure 3.7: Energy consumption of NVSleepMiss for single-threaded benchmarks relative
to SRAM baseline.

the baseline. Similar energy reduction is achieved by equake, mgrid, and swim. On

average, the energy savings of NVSleepMiss are 17.2% for SPEC Int benchmarks and

23.3% for SPEC FP benchmarks.

We compare NVSleepMiss with two reference designs. One is the NVSleep frame-

work with the sleep option disabled – we call this NVNoSleep. In NVNoSleep all

energy savings come from leakage reduction from STT-RAM structures. On average,

energy is 8-15% higher for NVNoSleep compared to NVSleepMiss. We also compare

to an ideal version of NVSleep that has no checkpointing overhead (NVSleepIdeal).

NVSleepIdeal is 3.3% and 9.1% more energy efficient than NVSleepMiss for SPEC

Int and SPEC FP respectively.

For the multi-threaded benchmarks we examine the energy benefits of NVSleep-

Miss, NVSleepBarrier, and the combined application of the two techniques (NVSleep-

Combined). Figure 3.8 shows the energy savings achieved by the three NVSleep

techniques compared to the baseline. Applications with fewer than 10 barriers get

virtually no benefit from NVSleepBarrier. For applications with more than 10 bar-

riers the energy savings depend on the level of workload imbalance and the number

of barriers. For lu, which is extremely unbalanced, the energy reduction exceeds
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Figure 3.8: NVSleepMiss, NVSleepBarrier, and NVSleepCombined energy for multi-
threaded benchmarks.

80%. streamcluster has over 4000 barriers but is fairly balanced. Its energy reduc-

tion is 22.1%. On average, applications with more than 10 barriers achieve a very

significant energy reduction of 33.8% with NVSleepBarrier. This represents a 22.4%

improvement over NVNoSleep.

NVSleepMiss does not help much in the case of multi-threaded benchmarks since

miss-related idle time is small. As a result NVSleepCombined is only marginally more

energy efficient than NVSleepBarrier.

3.5.3 NVSleep Overheads
3.5.3.1 Performance

Figures 3.9 and 3.10 show the runtimes of NVSleep implementations for single-

threaded and multi-threaded benchmarks respectively. There are mainly two sources

of performance overhead in NVSleep. The first one is caused by the pipeline drain

required to shut down cores in consistent states. This drain means that cores resume

execution after a shutdown with fewer instructions in their instruction windows than

they would otherwise have available. This might slow down execution in some cases

after the core is woken up.
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Figure 3.9: Runtime of NVSleepMiss design for single-threaded benchmarks.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

blackscholes

bodytrack
dedup

fluidanimate

streamcluster

swaptions
barnes

cholesky
fft lu ocean

radiosity
radix raytrace

water-nsquared

g.mean

N
o
rm

al
iz

ed
 E

x
ec

u
ti

o
n
 T

im
e

SRAM Baseline NVNoSleep NVSleepMiss NVSleepBarrier NVSleepCombined

Figure 3.10: Runtime of different NVSleep designs for multi-threaded benchmarks.

The other source of performance overhead is related to the way NVSleep handles

multiple LLC misses that occur in close temporal proximity. In NVSleep, a core is

only woken up after all LLC misses have returned. As a result, the core will miss

the opportunity to work on some instructions that are dependent on data that has

become available since the core has been shut down. This explains why we observe

more than 5% performance overhead in benchmarks like mcf, art, and swim, in which

multiple misses per sleep event are common. On average, the performance overhead

of NVSleepMiss is less than 3% and that of NVSleepBarrier and NVSleepCombined

is less than 1%.
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3.5.3.2 Area

The NVSleep framework has some area overhead due to the banked SRAM blocks

and STT-RAM shadow structures. According to CACTI and NVSim simulations with

our area model, the 8-bank NVSleep framework design will increase the processor core

area by 60%. However, since STT-RAM is much denser than SRAM, the cache area

is only 16% of the baseline design. Overall, the total chip area overhead of NVSleep

adds up to less than 3% of the SRAM baseline.

3.5.4 Sensitivity Studies

The main overhead of STT-RAM is high write latency. To better understand

its impact on overall energy savings, we experimented with various STT-RAM write

pulses ranging from aggressive 2ns to conservative 13ns. Figure 3.11 shows that

average energy savings for NVSleepMiss with single-threaded benchmarks gradually

become smaller as the STT-RAM write latency increases. When the write latency

reaches 11ns NVSleepMiss saves almost no energy. On the other hand, since check-

pointing is rare in NVSleepBarrier, the increasing STT-RAM write latency has almost

no impact on the overall energy savings of NVSleepBarrier. All our previous experi-

ments have assumed an STT-RAM write latency of 3.3ns, also used in prior work [26].

The number of banks in the hybrid SRAM/STT-RAM structures has an impact

on the overall energy savings because it directly affects the performance and energy

overhead of checkpointing. Figure 3.12 shows the energy consumption of NVSleepMiss

with the hybrid memory structures configured with 1, 2, 4, and 8 banks. We show

average energy across the SPEC benchmarks. Using higher number of banks reduces

performance overhead parallelism because all banks can be checkpointed in parallel.
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Figure 3.11: NVSleepMiss and NVSleepBarrier energy for different STT-RAM write la-
tencies, relative to NVNoSleep.
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Figure 3.12: NVSleepMiss energy for different numbers of banks.

However, increasing the number of banks also has an energy and area cost. The

energy and area sensitivity with the number of banks is shown in Table 3.4. The

optimal configuration for our system is the 8-bank design.

To examine the scalability of NVSleepBarrier we run the same experiments on sim-

ulated 16 and 32-core systems in addition to the 64-core system. As shown in Figure

3.13, we observe that NVSleepBarrier saves more energy in higher core count systems.

This is because barrier idle time and workload imbalance tends to increase with the

number of cores. NVSleepBarrier lowers energy by 24% on the 16-core system, by
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Num of Banks Energy/Access (nJ) Area (mm2)
1 0.000448 0.007543
2 0.000552 0.012091
4 0.000628 0.018883
8 0.000741 0.029032

Table 3.4: Energy and area for banked 1KB 32-bit SRAM.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

16 cores 32 cores 64 cores

N
o
rm

al
iz

ed
 E

n
er

g
y

High Barrier Count (> 10)

SRAM Baseline
NVSleepMiss

NVSleepBarrier
NVSleepCombined

Figure 3.13: NVSleep energy savings in CMPs with 16, 32, and 64 cores.

29.3% on the 32-core system, and by 33.8% on the 64-core system. Energy savings

from NVSleepMiss are only marginally higher with increasing number of cores.

3.6 Conclusion

Non-volatile memory can be used effectively to implement rapid checkpoint/wakeup

of idle cores. This work has explored a framework for implementing rapid check-

point using STT-RAM and two applications of that framework: NVSleepMiss and

NVSleepBarrier. Evaluation showed average energy savings of 21% for NVSleepMiss

in single-threaded applications and 34% for NVSleepBarrier in high barrier count

multi-threaded workloads, both with very small performance overhead. In future

work we will explore other opportunities for shutting down cores when idle such as

spinning due to lock contention or other synchronization events.
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CHAPTER 4

Respin: Rethinking Near-Threshold Multiprocessor Design
with Non-Volatile Memory

4.1 Introduction

Power consumption is now a primary constraint in microprocessor design spanning

the entire spectrum of computing devices. Steady increase in the number of cores

coupled with the growing inability to simultaneously activate most units of the chip

prompted many to predict the end of traditional multicore scaling [18]. Such predic-

tions emphasize the need to explore energy-efficient architectures that can continue to

leverage advancements in process technology. Near-threshold (NT) computing [17,46]

has emerged as a potential solution for continuing to scale future processors to hun-

dreds of cores. Near-threshold operation involves lowering the chip’s supply voltage

(Vdd) close to the transistor threshold voltage (Vth). Although this approach results

in a 10× slowdown in chip speed, power consumption is lowered by 100×, potentially

resulting in a full order of magnitude in energy savings. Unfortunately, near-threshold

computing suffers from a number of drawbacks. These include decreased reliability,

increased sensitivity to process variation, and higher relative leakage power [17,46,51].
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Although near-threshold operations dramatically reduce power consumption, the

contribution of dynamic and leakage components to the overall savings is not evenly

distributed. While dynamic power reduction is cubic as a function of Vdd and fre-

quency, leakage power only scales linearly. Caches are leakage dominated struc-

tures [43] that can account for 20% to 40% of the overall chip’s power consumption

depending on their size. Figure 4.1 shows the breakdown of leakage and dynamic

power within a 64-core CMP at both nominal and NT Vdd. We observe that at a

nominal Vdd of 1.0V, 14% of the total CMP power is attributed to cache leakage and

another 14% to cache dynamic power. Overall, dynamic power represents 60% of

the total CMP power consumption. However, when the same CMP operates in the

near-threshold range, with a core Vdd of 400mV and a cache Vdd of 650mV, leakage

power dominates, accounting for 75% of the total CMP power consumption. Close

to half that leakage power is consumed by caches. While these numbers vary as a

function of cache size, voltage and other factors, we find that reducing cache leakage

will result in significant power savings at near-threshold voltages.

SRAM-based caches are generally the most vulnerable structure within the chip

and are especially sensitive to low voltage. They are optimized for density and there-

fore rely on the smallest transistor design available for a given technology. While

this approach enables larger cache capacities, it has the adverse effect of making such

units particularly vulnerable when operating at low voltages [82]. Process variation

effects become increasingly pronounced as a function of Vdd reduction [50]. Conse-

quently, this creates imbalances in the SRAM cells where a variety of failures can

occur including timing and data retention errors. Such error rates are exacerbated in

the near-threshold range, significantly compromising the ability of caches to reliably
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Figure 4.1: Dynamic and leakage power breakdown for a 64-core CMP at nominal and
near-threshold voltages.

store data. Although a large body of error correction techniques have been proposed

to deal with the high error rates in SRAM at low voltages [11, 51], the overhead

associated with such approaches in the near-threshold range makes them inefficient.

This work proposes a near-threshold chip multiprocessor design that uses Spin-

Transfer Torque Random Access Memory (STT-RAM) to consolidate on-chip caches.

We find STT-RAM to be an attractive candidate for implementing near-threshold

systems for several reasons including low leakage, high density, and non-volatility

[26, 38, 60, 72]. At one eighth the leakage of SRAM designs, STT-RAM based caches

can operate at higher voltages and still save energy as a result of non-volatility.

Raising the supply voltage has the advantage of alleviating the reliability concerns

typically associated with low Vdd. Moreover, the inherently high write latencies of

STT-RAM cells can be efficiently tolerated due to the low clock speeds at which
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near-threshold cores execute. This obviates the need for large SRAM buffers to

mitigate performance bottlenecks caused by slow STT-RAM write speed [26, 74].

Moreover, unlike phase-change memory (PCM) and NAND flash memories [78], STT-

RAM enjoys near-unlimited write endurance [72].

Based on these insights, we design a near-threshold chip multiprocessor (CMP)

that utilizes dual voltage rails that can power processor cores and caches separately.

We allocate a Vdd rail in the near-threshold range to the processing cores since they

can operate at low frequencies. A second high Vdd supply rail is dedicated to the

STT-RAM cache. This improves cache write latency relative to the cores. Further-

more, with this approach cache read latencies are substantially faster than the cycle

time of the NT cores. This allows L1 caches to be shared by clusters of multiple

cores, eliminating the need for cache coherence within the cluster. We show that this

improves both latency and energy relative to traditional private cache designs. We

redesign the shared cache controller to time-multiplex requests from different cores.

The cluster size is chosen such that the vast majority of the read requests are serviced

within a single core cycle to ensure no degradation in cache access latency.

The shared L1 cache enables another key feature of our CMP design. Since the

L1 is shared by all cores within a cluster, migrating threads from one core to another

has very low overhead compared to private cache designs because cached data is not

lost in the migration. We take advantage of this feature to further reduce energy con-

sumption with a dynamic core consolidation mechanism. The technique dynamically

co-locates threads on the most energy efficient cores shutting down the less efficient

ones depending on the characteristics of the workload. A runtime mechanism uses a

greedy optimization that dynamically chooses the active core count which minimizes
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energy consumption. The motivation behind core consolidation is two-fold: (1) NTV

cores have high leakage and powering some of them off can sometimes lead to net

energy gains and (2) applications have low-IPC phases during which multiple threads

can be consolidated on a single core with small impact on performance.

Evaluation using SPLASH2 and PARSEC benchmarks shows 11% performance

improvement with the shared cache design and 33% combined energy savings with

the dynamic core consolidation optimization enabled.

Overall, this work makes the following contributions:

• Proposes STT-RAM as a great candidate for saving leakage and improving

performance in near-threshold chips. To the best of our knowledge, this is the

first work to use non-volatile caches in near-threshold chip multiprocessors.

• Introduces a novel process variation aware shared cache controller design that

efficiently accommodates requests from cores running at different frequencies.

• Presents a low overhead dynamic core consolidation system that transparently

virtualizes hardware resources to save energy.

4.2 Near-Threshold CMP With STT-RAM Caches

We design an NT CMP that uses STT-RAM for all on-chip caches. Figure 4.2

illustrates the chip’s floorplan. The CMP is organized in clusters within which all

cores share single L1 and L2 caches. The clusters themselves share the last-level cache

(L3). The CMP makes use of two externally regulated voltage domains. One domain,

which contains the core logic is set to low NT Vdd. The second, which encompasses

the entire STT-RAM cache hierarchy and a few logic units, runs at high nominal Vdd.
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Figure 4.2: Floorplan of the clustered 64-core CMP design (a) with details of the cluster
layout (b).

Note that two voltage domains are generally needed for SRAM-based NTV systems

also because SRAM requires a higher voltage to operate reliably.

Running the STT-RAM caches at nominal Vdd dramatically improves write speed

relative to the NT cores, reducing write latency from 10 cycles to about 3 cycles

for a core running at 500MHz. Level-shifters [20] are needed for all cross voltage

domain up-shift transitions (from low to high voltage domain). The delay overheads

introduced by these circuits are compensated by the speed gain in the units running

at higher voltages. We account for the level-shifting delay and power overhead in our

evaluation.

An additional benefit of the high voltage cache is that read accesses are very fast

relative to the core speeds. For example, a 256KB STT-RAM L1 cache has a read

speed around 0.4ns (in line with data reported by recent work [26,38,72]). The level

shifters needed to access the high-Vdd shared cache add some delay overhead (0.75ns

according to [20]). This overhead is incurred only when the voltage is upshifted
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from the NT Vdd of the cores to the high Vdd of the cache. Even with the level-

shifting overhead (which can be pipelined at the cache side), the cache response time

is significantly faster than the cycle time of the NT cores (ranging between 1.6ns and

2.4ns).

We exploit the fast read speeds and share a single L1 instruction, L1 data, and

L2 cache among all the cores for each cluster. This is accomplished by running the

shared L1 cache at a high frequency (2.5GHz in our experiments to match the 0.4ns

access time) and time-multiplexing requests from the cores in each cluster. The main

advantage of the shared cache design is that coherence is no longer necessary within

each cluster. This greatly reduces the latency cost of sharing data between threads

that are executing on cores in the same cluster. It also reduces coherence traffic,

design complexity, and energy cost.

The large core-to-core variation associated with NT operation [50, 53] makes the

approach of limiting the entire CMP to match the frequency of the slowest core

very inefficient. Since fast cores are almost twice as fast as slow ones, we allow the

respective cores across the CMP to run at the highest frequencies they can achieve.

To keep the design cost effective, each cluster uses a single PLL for generating its base

clock. The reference clock that feeds this PLL is based on the maximum frequency

of the cache (e.g. 2.5GHz corresponding to 0.4ns). The cores run at integer multiples

of the reference clock (e.g. 1.6ns, 2.0ns, 2.4ns) generated through clock multipliers.

As a result, all cache access requests will align at cycle boundaries with the cache’s

reference clock, enabling the cache controller to efficiently arbitrate between requests

from different cores.
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4.2.1 Time-Multiplexing Cache Accesses

The shared cache controller handles multiple parallel requests from different cores

using a form of time multiplexing. The primary goal of the cache controller is to

return read hit requests to individual cores within a single core cycle. Since cores

have cycle times, slower cores have more time slacks to have their requests serviced

compared to faster cores. As a result, requests arriving at the same time are ordered

based on the frequency of the requesting cores. Higher frequency cores are serviced

first, while requests from slower cores receive lower priority. If the cache bandwidth

is exceeded and a hit request cannot be serviced in time, a “half-miss” response is

sent to the core and the request is serviced in the following cycle. In our evaluation,

only about 4% of cache acesses result in half-misses.

Figure 4.3 shows an example of how multiple access requests from cores that are

using different clock periods (1.6ns-2.4ns) are handled by a shared cache operating

at 2.5GHz (0.4ns clock period). A cycle-by-cycle timeline of such requests is outlined

in Figure 4.3 (a). In this figure, each request is associated with a line segment that

represents the cycle time of the original core that issued it. This is a multiple of the

reference clock that is used by the cache. For instance, Core 0 is running at 625MHz,

which means its cycle time of 1.6ns is equal to 4 cache cycles. Since Core 0’s request

is received in cycle 0, to ensure that the cache responds within a single core clock

cycle, the cache must send the data (or miss signal) by the end of cycle 3. Each

core’s request takes 2 fast cache cycles (0.8ns) to arrive at the cache due to wire and

level-shifting overhead.

To keep track of all requests, the cache controller maintains a request register

and a priority register for each core in the cluster. The request register stores the
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Figure 4.3: Example timeline of access requests from cores running at different frequencies
to a shared cache running at high frequency.

requested address, type, and the data for the read requests. The priority registers

are shift registers preloaded with a representation of the number of fast cache cycles

available for each request. Figure 4.3 (b) shows a view of the priority registers for

the same example. For instance, for Core 0, which needs to be serviced in two cache

cycles, the request register is preloaded with “00011”. Note that the cycles required

to service each request account for the level shifting overhead. In other words, even

though Core 0’s request needs to be serviced in 1.6ns or four cache cycles, two of

those are spent in the level shifters and wires. The remaining two are recorded in

the priority register. For Core 1’s request, which needs to be serviced in four cache

cycles, the register is preloaded with “01111”. All priority registers are right-shifted
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by one position each cache cycle to indicate a reduction in the available time for all

unserviced requests.

At the end of cycle 2, the cache has three requests from Core 0, Core 2, and Core

3, out of which the cache can only service one. The cache controller picks the request

that expires the soonest (i.e. the one with the fewer “1” bits) using simple selection

logic. In this example all three requests have equal priority so the cache randomly

chooses to service Core 0. This is indicated by the red “checkmarks” in Figure 4.3

(a) and the red rectangles in Figure 4.3 (b). The priority register corresponding to

Core 0 is cleared and becomes available for a new request in the following cycle.

In cycle 3, the requests from Core 2 and Core 3 are both critical, meaning they

have to be serviced in the current cycle (priority register is “00001”). Since the cache

can only service one request it will choose Core 2’s. A “half-miss” event will be

sent to Core 3 to indicate that the request could not be fulfilled in a single cycle,

but this is not necessarily an L1 miss. Core 3’s request will be rescheduled through

a reinitialization of the priority register. To increase its priority the register will be

initialized to a lower value (in this example “00001”). Core 3’s request will be serviced

in cycle 4, which corresponds to a 2-cycle total hit latency. Requests from Core 4

and Core 1, issued in cycle 1 will be serviced in their priority order in cycles 5 and 6

respectively.

4.3 Dynamic Core Management

The shared L1 cache design significantly reduces the performance overhead of

migrating threads within the same cluster. This is because no cache data is lost
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Figure 4.4: Overview of the virtual core management system integrated in one cluster.

after the migration. We take advantage of this feature to further reduce energy con-

sumption with a dynamic core consolidation mechanism. The motivation behind core

consolidation stems from the fact that NT cores exhibit high variability in maximum

operating frequency. They also have a high ratio of leakage to dynamic power. As

a result, cores that achieve a higher frequency at the same voltage are more energy

efficient that then the low-frequency ones. In some situations it is therefore more

energy efficient to power off the least efficient cores and consolidate their threads to

the more efficient ones. This is generally true in low-IPC phases.

4.3.1 Core Virtualization

We find that low-IPC execution phases are relatively short and therefore taking

advantage of them requires a low overhead, fast reacting mechanism for migrating
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threads and shutting down cores. We present a new hardware management mech-

anism that dynamically consolidates cores through a virtualization extension. The

proposed system takes advantage of shared resources to transparently remap running

applications across a set of heterogeneous cores.

Implementing this management system in hardware as opposed to the OS enables

faster response times and lower performance overhead. In addition, the hardware-

based core consolidation system is transparent to the OS and does not require OS

intervention or support. This makes the solution easily deployable and backward

compatible irrespective of the underlying hardware differences. Figure 4.4 depicts

an overview of how our core management system would be integrated into a chip

multiprocessor.

A key feature of our design is the ability to autonomously and transparently

migrate threads to different physical cores without OS intervention. To that end

our system makes use of virtual cores that provide a homogeneous view of processor

resources to the OS. The virtual resources are made visible to the OS via the Advanced

Configuration and Power Interface (ACPI) available within system firmware.

The core consolidation mechanism dynamically shuts down physical cores follow-

ing an energy optimization algorithm. However, from the OS point of view, all virtual

cores are always available. If some physical cores are off, a core mapping mechanism

assigns multiple virtual cores to a single physical core.
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Figure 4.5: Greedy selection for dynamic core consolidation.

4.3.2 Energy Optimization Algorithm

An energy monitoring and optimization system is implemented in firmware run-

ning on a dedicated on-chip microcontroller that is deployed in many of today’s pro-

cessors [33] for energy management.

A virtual core monitor (VCM) block, shown in Figure 4.4 is responsible for mon-

itoring the energy per instruction (EPI) for each virtual core using hardware perfor-

mance counters. The VCM also runs the energy optimization algorithm designed to

dynamically search for the optimal number of active cores.

A simple greedy search algorithm (illustrated in Figure 4.5) guides the energy

optimization. Execution is broken down into multiple epochs. At the end of each

epoch the algorithm decides whether a physical core should be shut down, turned on,

or if nothing needs to change. The EPI of the current epoch is compared to that of

the previous one. If the difference exceeds a predefined threshold, then physical cores

are either turned off or on.

The system starts with all physical cores on for an entire epoch. At the end of the

first epoch, one physical core is shut down and its virtual core migrated to another
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core. The new EPI is measured at the end of the epoch. If energy is lower, the

greedy search continues by progressively shutting down additional cores. If energy

is higher, the search reverses direction. If EPI difference between the current and

previous epoch is lower than the threshold, the current state is maintained for the

next epoch. This is done to avoid excessive state changes for minor energy benefits.

In addition, the algorithm applies an exponential back-off to eliminate unnecessary

oscillations between neighboring states. The history of recent state changes within

each cluster is recorded. If the system detects an oscillating pattern, it exponentially

increases the number of epochs during which it will hold the current state before

attempting a state change (e.g. 2, 4, 8, 16, and 32 epochs).

4.3.3 Virtual Core Consolidation

Core consolidation within a cluster is handled by the core remapper module de-

picted in Figure 4.4. Whenever a power down/up event is required, the remapper

examines the pool of active physical cores. An energy efficiency score is precomputed

and recorded in a table. The score is determined based on the frequency of the core.

Faster cores are more energy efficient because they can achieve a lower energy per

instruction at the same voltage than lower frequency cores. The primary reason is

that the high leakage power that dominates NT cores is a fixed cost independent of

frequency. Using the energy profile, the system will turn off the least efficient active

core, or turn on the most efficient inactive core as dictated by the greedy search.

Once a core is marked for deconfiguration, the remapper assigns one of the re-

maining active physical cores as a host for the unassigned virtual core. To keep the

design simple, allocations to active physical cores are performed in a round robin
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fashion. We start allocations with the most efficient core (fastest) and move down

to the least efficient one (slowest). This means that multiple virtual cores are more

likely to be consolidated on the faster physical cores, thus alleviating the performance

impact of consolidation.

The migration of the virtual core follows two main phases. In the first phase,

the deconfigured core stops fetching new instructions and saves the next PC into a

consolidation register. The core continues to execute instructions until all in-flight

instructions are committed. The register file content is then saved. In the second

phase, the target physical core is interrupted and the register file image and the PC

are transferred. Execution resumes on the new core. Once the remapping is complete,

the virtual-to-physical ID map is updated accordingly to reflect the new association.

A request is then issued to the power control module to power gate the deconfigured

core. A similar migration process is followed when a new physical core is activated

and a virtual core is migrated to it.

If multiple virtual cores are mapped to a single physical resource, hardware-based

context switches are performed at regular intervals that are much smaller than the

typical OS context-switch interval. This ensures fairness and uniform progress of the

virtual cores such that they all appear to be running simultaneously.

4.3.4 Mitigating Core Consolidation Overhead

There are a few sources of potential performance overhead associated with our

core consolidation mechanism. The biggest potential cost for our remapping scheme

is the loss of data stored in local caches. If remapping is frequent, “cold-cache” effects

can severely degrade performance. In our CMP design, we restrict the remapping of
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virtual cores to occur only within clusters. This means that application level threads

that are associated with virtual cores don’t lose any data locality since the entire

cache hierarchy is shared at the cluster level.

Another source of overhead is the loss of architectural state associated with each

individual thread including branch prediction history and on-chip data stored in reg-

ister files or reorder buffers. After every consolidation the architectural information

of each newly remapped thread is lost. It takes tens of cycles to rebuild those states

before the thread can perform any useful work. Therefore if remapping occurs too

frequently, the overall performance can suffer. We address this issue by carefully

choosing a reasonable consolidation interval. With experiments we find that remap-

ping performed every 160K instructions carries only a small performance penalty and

returns optimal energy savings.

Finally, another potential source of overhead is related to the action of powering

on cores. After a core is turned on from a power-gated state, voltage noise can

cause timing errors [52]. To prevent that, the core is stalled for a brief period of

time. However, because the cores run at NT voltage and their power is relatively low

compared to their available capacitance the noise is small. As a result the penalty

for voltage stabilization is only about 10-30ns [50] or 5-15 cycles for a core running

at 500MHz.

All types of overheads discussed above are properly reflected in our design and

included in the evaluation results shown in Section 4.5.
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Hierarchy Size Block Assoc. Rd/Wr
Size Ports

L1I (Private/ 16KB (Private)/
Shared w/i 256KB (Shared 32B 2-way 1/1
Cluster) w/i Cluster)
L1D (Private/ 16KB (Private)/
Shared w/i 256KB (Shared 32B 4-way 1/1
Cluster) w/i Cluster)
L2 (Shared 8MB (Small)/
w/i Cluster) 16MB (Medium)/ 64B 8-way 1/1

32MB (Large)
L3 (Shared 24MB (Small)/
w/i Chip) 48MB (Medium)/ 128B 16-way 1/1

96MB (Large)

Table 4.1: Summary of cache configurations.

4.4 Evaluation Methodology

We modeled a 64-core CMP with a range of cluster sizes from 4 to 32 cores.

Most experiments were conducted with a cluster size of 16 cores, which we found to

be optimal. We also experimented with three cache configurations: small, medium,

and large. The size of the caches were chosen to provide between 1MB (small) and

4MB (large) of cache for each core, in line with existing commercial designs [33,

64]. Also in line with existing designs, our medium cache configuration accounts for

approximately 25% of the total chip area. In the large configuration the total cache

area represents 50% of the chip area. Most of our results are reported for the medium

cache configuration. The small and large are included for reference and trend analysis.

Table 4.1 summarizes our cache configurations at different levels.

In our experiments each core has a dual-issue out-of-order architecture. We used

SESC [63] to perform all of our simulations. We collected runtime, power, and energy
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CMP Architecture
Cores 64 out-of-order
Fetch/Issue/Commit Width 2/2/2
Register File Size 76 int, 56 fp
Instruction Window Size 56 int, 24 fp
Reorder Buffer Size 80 entries
Load/Store Queue Size 38 entries
NoC Interconnect 2D Torus
Coherence Protocol MESI
Consistency Model Release Consistency
Technology 22nm
NT-Vdd 0.4V (Core), 0.65V (Cache)
Nominal-Vdd 1.0V
Core Frequency Range 375MHz-725MHz
Median Core Frequency 500MHz

Variation Parameters
Vth std. dev./mean (σ/µ) 12% (chip), 10% (cluster)

Table 4.2: CMP architecture parameters.

information. Table 4.2 summarizes the baseline architecture configuration parame-

ters. NVSim [16] combined with CACTI [57] was used to obtain STT-RAM latency,

energy, and area. Similarly, per access energy for all SRAM memory structures in-

cluding register file, reorder buffer, load/store queue, and instruction window were

extracted through CACTI. McPAT [43] was used to model energy per access for all

CMOS logic units such as ALUs and FPUs. We included a model for leakage power

based on estimated unit area and technology (CMOS vs. MTJ). This information

was inserted into SESC’s activity model in order to obtain total power and energy

consumption. Table 4.3 lists the technology parameters we obtained from NVSim and

CACTI for various types of L1 data caches. The cache areas reported take into ac-

count the higher density of STT-RAM compared to SRAM. We rounded STT-RAM
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Vdd Area Rd/Wr Rd/Wr Leakage
Rail (mm2) Lat. (ps) Eng. (pJ) (mW)

SRAM Low 0.9176 1337 2.578 573(16KB×16) (0.65V)
SRAM High 0.9176 211.90 6.102 881(16KB×16) (1.0V)
SRAM High 0.9176 533.60 42.41 881(256KB) (1.0V)
STT-RAM High 0.2451 388.20/ 29.32/ 114(256KB) (1.0V) 5208 209.30

Table 4.3: L1 data cache technology parameters.

cache read latency up to 0.4ns to align clock edges between the shared cache and

cores. Parameters of other cache hierarchies are similarly simulated and properly fed

into our architecture simulations.

Two benchmark suites were adopted in the evaluation: SPLASH2 and PARSEC.

SPLASH2 (barnes, cholesky, fft, lu, ocean, radiosity, radix, raytrace, and water-

nsquared) was configured to run with reference input sets. PARSEC (blackscholes,

bodytrack, streamcluster, and swaptions), on the other hand, was launched with sim-

small input sets. We used VARIUS [68] to model variation effects on threshold volt-

ages (Vth) across the CMP. We generated distributions of core frequencies that were

used in the simulations.

4.5 Evaluation

In this section we show performance and energy benefits of the proposed archi-

tecture. We also include sensitivity studies on optimal cluster size, shared cache

behavior, and dynamic core consolidation mechanism. For easy reference, Table 4.4

summarizes all the architecture configurations used in our evaluation.
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Configuration & Description
PR-SRAM-NT NT chip with SRAM private L1(I/D)
(baseline) cache and shared L2/L3 cache
HP-SRAM-CMP Traditional high-performance CMP with
(alt. baseline) cores and caches at nominal Vdd
SH-SRAM-Nom NT core with nominal Vdd SRAM shared

L1(I/D) cache and shared L2/L3 cache

SH-STT SH-SRAM-Nom with all caches built
in STT-RAM

SH-STT-CC SH-STT that performs hardware-managed
dynamic core consolidation

SH-STT-CC-Oracle SH-STT-CC with oracle knowledge for
dynamic core consolidation

PR-STT-CC SH-STT-CC with private L1(I/D) cache

SH-STT-CC-OS SH-STT-CC with OS-managed dynamic
core consolidation

Table 4.4: Architecture configurations used in the evaluation.

4.5.1 Power Analysis

Figure 4.6 shows the reduction in power consumption from the proposed STT-

RAM-based CMP architecture without dynamic core consolidation (SH-STT). Since

the power savings we obtain are dependent on the size of the cache, we show results

for three cache configurations (Table 4.1): small, medium, and large. The medium

size cache is the most typical one, with about 2MB/core of total cache capacity. In

this configuration, the cache accounts for approximately 25% of the chip area.

We compare to a baseline that uses SRAM caches running at a low voltage rail

(0.65V) in a traditional private cache hierarchy (PR-SRAM-NT). This is the most

typical near-threshold CMP design. The reason why SRAM caches run at a higher

voltage rail is to ensure acceptable reliability since SRAM caches running at NT Vdd

51



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

PR-SRAM-NT

SH-SRAM-Nom

SH-STT
PR-SRAM-NT

SH-SRAM-Nom

SH-STT
PR-SRAM-NT

SH-SRAM-Nom

SH-STT

N
o
rm

al
iz

ed
 T

o
ta

l 
C

h
ip

 P
o
w

er

Small Cache Medium Cache Large Cache

leakage dynamic

Figure 4.6: Power reduction of proposed design for three L2/L3 cache sizes: small,
medium, and large.

would be unusable without cell resizing or strong error correction [21, 51] – both of

which carry significant overheads.

We can see that power is lower for SH-STT compared to the baseline in all config-

urations. The reduction in total power comes from lower leakage power at the cost of

slightly increased dynamic power (due to nominal voltage STT-RAM reads and the

high cost of STT-RAM writes). For the small cache configuration the power is only

about 2.1% lower. For the medium and large configurations the power savings are

significant, at 12.9% and 22.1% respectively.

Figure 4.6 also shows a breakdown of leakage and dynamic power for each config-

uration. We can see that for STT-RAM, even though dynamic power is higher due

to the nominal voltage cache operations, the reduction in leakage power compensates

for it in all three cache size configurations.
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For reference, we also compare to an SRAM design in which the cache is shared

and also running at nominal voltage (SH-SRAM-Nom), the same configuration used

by our proposed design but with SRAM caches. This ensures reliable operation but

is costly in terms of power. SH-SRAM-Nom uses between 22% and 65% more power

than SH-STT for the three cache sizes. This is due to the much higher leakage power

consumed by SRAM running at nominal voltage.

4.5.2 Performance Analysis

The shared cache design brings significant performance improvements compared

to the baseline system. Figure 4.7 shows the execution time of the proposed STT-

RAM design (SH-STT) with medium-sized cache. The results are normalized to the

PR-SRAM-NT baseline. Process variation effects (core frequency distributions) are

modeled in all configurations. We can see that the SH-STT configuration reduces

execution time by an average of 11%. This performance improvement is due to the

benefits of within-cluster cache sharing. Applications that benefit the most are those

in which there is significant data sharing and reuse such as raytrace. Applications

such as ocean also benefit significantly because they make heavy use of synchronization

(ocean has hundreds of barriers). Synchronization is much faster in the shared cache

design because it involves much less coherence traffic.

We also compare SH-STT to SH-SRAM-Nom (as before) and we add another base-

line, HP-SRAM-CMP. HP-SRAM-CMP represents a conventional high-performance

design in which the entire CMP (cores plus caches) run at nominal voltage. Figure

4.7 shows that compared to SH-SRAM-Nom our proposed SH-STT design achieves

marginally better performance (1.2% on average) because of slightly faster read speed
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Figure 4.7: Relative runtime of SPLASH2 and PARSEC benchmarks for various designs
with medium-sized cache.

of STT-RAM compared to SRAM. The high-performance HP-SRAM-CMP achieves

the lowest execution time because it runs at high voltage and high frequency. This

performance, however, comes at a much higher energy cost.

4.5.3 Energy Analysis

Our design reduces both power consumption and execution time resulting in im-

portant energy savings. Figure 4.8 shows that SH-STT has between 13% and 31%

lower energy than PR-SRAM-NT baseline depending on cache sizes. As expected we

see larger energy savings for larger cache sizes. We also show that the SH-SRAM-

Nom configuration which uses shared SRAM caches at nominal Vdd uses 8-16% more

energy than the NT SRAM baseline (PR-SRAM-NT).

Figure 4.9 shows the energy breakdown by benchmark for our designs with the

medium-sized cache relative to the PR-SRAM-NT baseline. The shared STT-RAM
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Figure 4.8: Energy consumption for small, medium, and large L2 and L3 cache configu-
rations.

cache design (SH-STT) reduces energy by an average of 23%. This is in stark con-

trast with a similar shared cache configuration that uses SRAM at nominal Vdd

(SH-SRAM-Nom), which increases energy by 12%. The high-performance baseline

HP-SRAM-CMP consumes 40% more energy on average than the PR-SRAM-NT

baseline. Relative to HP-SRAM-CMP, our SH-STT design has an average of 45%

lower energy consumption. When we add dynamic core consolidation (SH-STT-CC),

we reduce energy by an additional 10% for a combined 33% reduction relative to

PR-SRAM-NT (51% reduction relative to HP-SRAM-CMP).

We also include an oracle version of the dynamic core consolidation solution (SH-

STT-CC-Oracle) to show the limits of our greedy-search-based energy optimization.

We obtained SH-STT-CC-Oracle by choosing the optimal number of cores to consol-

idate at each evaluation interval. SH-STT-CC-Oracle reduces energy consumption

by 36%. The small 3% difference between the Oracle and our implementation is due
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to the slight sub-optimality of the greedy search we perform. Overall it is a small

penalty to pay for a fast optimization that can be deployed in production systems.

Figure 4.9 also compares the energy reduction of SH-STT-CC relative to other

possible alternatives for implementing core consolidation. PR-STT-CC shows the

energy of a solution that attempts core consolidation with private STT-RAM caches.

Because of the overhead of consolidating cores with private caches (which results in

loss of cache locality after consolidation), PR-STT-CC reduces energy by only 24%

compared to 33% for SH-STT-CC.

We also compare with an approach in which core consolidation is handled by the

OS at coarser time intervals (1ms). SH-STT-CC-OS does not require any hardware

support since consolidation is controlled by the OS. However, because consolidated

threads are context-switched at coarser intervals, critical threads can easily bottleneck

the entire application when they are not running. This hurts performance significantly

to the point where energy actually increases by 27% compared to SH-STT.
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Cluster Size Shared Cache Size Performance Gain
(#cores) (KB) (%)
4 64 4.82
8 128 6.29
16 256 10.81
32 512 2.50

Table 4.5: Cluster size impact on performance.

4.5.4 Optimal Cluster Size

A key parameter for our design is the cluster size. We run simulations with cluster

sizes of 4, 8, 16, and 32 cores. Table 4.5 summarizes the results. Note that, as we

increase the cluster size we also proportionally increase the shared L1 cache size. For

the entire CMP, the total core count and the sum of all L1 cache capacities remain

constant.

Performance improves in SH-STT when going from 4 to 16 cores per cluster by

5% to 11% compared to PR-SRAM-NT baseline. This is due to the increased op-

portunity for data sharing and reduced coherence traffic. The downside is increased

bandwidth pressure on the shared cache. When the cluster size is increased to 32

cores, performance improvement drops to only 2.5%. The larger cache size (512KB

for 32 cores vs. 256KB for 16 cores) has higher access latency and lower bandwidth.

At the same time the number of cores goes from 16 to 32, generating a lot more

requests and overwhelming the reduced bandwidth. The optimal cluster size for this

design is therefore 16 cores.
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4.5.5 Shared Cache Impact on Access Latency

The shared cache design cannot guarantee single cycle access to all cache read

hits. If requests cannot be serviced in the equivalent of a core cycle, a “half-miss”

response is returned to the core. In order to better understand the impact of the

shared cache contention on access latency, we conducted two sets of experiments.

The first experiment measures cache utilization by looking at the number of re-

quests arriving at the shared cache each cycle. Figure 4.10 shows percentage of the

total cache cycles in which a given number of requests arrive at the shared cache.

We count all requests handled by the cache including reads, writes, line fills, etc.

We show numbers for five different benchmarks and the arithmetic mean of all our

benchmarks.
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We can see that, on average, almost half of the cache cycles (49%) have no incom-

ing requests, 21% with one request, 15% with two requests, 9% with three requests,

and 6% with more than four requests. This shows that requests exceeding the number

of available ports (1 read/1 write) occur in about 30% of the cache cycles. However,

these are fast cache cycles and each requesting core has considerable time slacks in

which to receive a response. As a result, most of these requests will not receive a

delayed response.

Figure 4.11 shows a histogram of the percentages of read hit requests serviced in

1, 2, or more core cycles. We can see that the vast majority of requests are handled

in 1 cycle (95.8%). About 4% of requests result in half-misses and over 99% of those

are handled in 2 cycles. As a result, the performance impact of the cache contention

is small, and more than compensated by the benefits of the shared cache.
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59



 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  20  40  60  80  100  120  140  160

N
u

m
b

e
r 

o
f 

O
F

F
 C

o
re

s

Number of Million Instructions

SH-STT-CC SH-STT-CC-Oracle

Figure 4.12: Core consolidation trace of radix.

4.5.6 Dynamic Core Consolidation

Figure 4.12 shows a detailed runtime trace of radix when performing dynamic

core consolidation. We show traces for both SH-STT-CC and SH-STT-CC-Oracle to

compare the effectiveness of our consolidation mechanism. We can see that except

for a few data points, our consolidation trace matches very well with the oracle trace.

This leads to very close energy savings for SH-STT-CC (48%) and SH-STT-CC-Oracle

(50%) compared to PR-SRAM-NT baseline.

Occasionally the greedy search does not respond sufficiently fast to keep up with

workload changes, whereas the oracle adapts immediately. This can be observed in

benchmarks such as lu, shown in Figure 4.13. The greedy search gradually searches

for the optimal energy point, resulting in some temporary sub-optimal behavior. As

a result, for the lu benchmark, our proposed SH-STT-CC design saves 29% energy

while SH-STT-CC-Oracle saves 38%.
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Figure 4.13: Core consolidation trace of lu.

Dynamic core consolidation takes advantage of the large variability in application

behavior both within and across workloads. To illustrate this, Figure 4.14 shows the

average number of active cores in a cluster for each benchmark. We can see that on

average only 10 out of 16 cores in a cluster are used. Note that, however, there is high

variability in the number of active cores both across and within benchmarks. The

markers on each bar indicate the range of active cores throughout the execution. The

startup phase of each benchmark is excluded. We can see that for most benchmarks,

core consolidation takes advantage of the full dynamic range from 16 to 4 active cores

per cluster. Some exceptions include radix which only activates 11 cores per cluster

at the most and blackscholes which never uses fewer than 6 physical cores.
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Figure 4.14: Average number of active cores (and min and max values) using core consol-
idation for SPLASH2 and PARSEC benchmarks.

4.6 Conclusion

This is the first work to explore the use of STT-RAM in near-threshold processors.

We find STT-RAM to be an ideal SRAM replacement at near-threshold for two rea-

sons: first, it has very low leakage, which dominates near-threshold designs; second,

it can efficiently run at nominal voltages, avoiding the reliability problems of low-Vdd

SRAM. We show that an architecture designed to exploit STT-RAM properties by

sharing the cache hierarchy and implementing dynamic core consolidation mechanism

can help lower energy consumption by up to 33% and improve performance by 11%.
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CHAPTER 5

NVInsecure: When Non-Volatile Caches Meet Cold Boot
Attacks

5.1 Introduction

The characteristics of non-volatile memory including performance, energy, and

reliability have already been examined in extensive prior work [22,26,35,38,41,60–62,

72,74,75,77–79,85]. Despite all their expected benefits, non-volatile memories also in-

troduce new security vulnerabilities as data stored in these memories will persist even

after being powered-off. In particular, non-volatile memory is especially vulnerable

to “cold boot” attacks. Cold boot attacks, as first proposed by Halderman et al. [27],

use a cooling agent to lower the temperature of DRAM chips before physically remov-

ing them from the targeted system. Electrical characteristics of DRAM capacitors at

very low temperatures cause data to persist in the chips for a few minutes even in the

absence of power. This allows the attacker to plug the chips into a different machine

and scan the memory image in an attempt to extract secret information. When the

memory is implemented using NVM, the cold boot attacks become much simpler and

more likely to succeed, because of its non-volatile data storage.

63



Cold boot attacks were primarily demonstrated against DRAM memory chips.

To protect against cold boot attacks on main memory, one approach is to apply

memory encryption techniques [10,29,42,44,65,73,80,81] to guarantee sensitive data

is always encrypted when stored in the main memory. Another approach is to keep

secret keys stored in SRAM-based CPU registers, caches, and other internal storage

during system execution [12,23–25,54,55,59,71,84]. The rationale behind this design

philosophy is that cold boot attacks against on-chip SRAM structures are deemed to

be extremely difficult. This is because SRAM data persistence at cold temperatures

is limited to a few milliseconds [4].

However, the security implications of implementing the main memory and micro-

processor caches with NVM have received little attention. While memory encryption

schemes are feasible, cache encryption is not practical due to low access latency re-

quirements. Cold boot attacks on unencrypted NVM caches will be a serious concern

in practice, especially in the future with the prevalence of smart mobile devices and

Internet of Things (IoT) that are more likely to be exposed to physical tampering—a

typical setup for cold boot attacks.

This work examines the security vulnerabilities of microprocessors with NVM

caches. In particular, we show that encryption keys can be retrieved from NVM

caches if an attacker gains physical access to the device. Since removing the processor

from a system no longer erases on-chip memory content, sensitive information can be

leaked. This work demonstrates that AES disk encryption keys can be identified

in the NVM caches of a ARM-based system running the Ubuntu Linux OS. Since

no microprocessors with NVM caches are currently commercially available we rely

on a full system simulator [9] for our experiments. This gives us full visibility into
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the cache content at any point during the execution and allows us to evaluate the

vulnerability of systems with different cache sizes and configurations.

We have examined multiple attack scenarios to evaluate the probability of a suc-

cessful attack depending on the system activity, attack timing and methodology, etc.

In order to search for AES keys in cache images, we adopted the key search algorithm

presented in [27] for main memories, and made the necessary modifications to target

caches which cover only non-contiguous subsets of the memory space. We find that

the probability of identifying an intact AES key if the processor is stopped at any

random point during execution ranges between 5% and 100% on average, depending

on the workload and cache size. We also demonstrate a reproducible attack with

100% probability of success for the system we study.

To counter such threats, this work proposes an effective software-based counter-

measure. We patch the Linux kernel to allocate sensitive information into a designated

memory page that we mark as uncacheable in its page table entry (PTE). This way

secret information will never be loaded into vulnerable NVM caches but only stored

in main memory and/or hard disk which can be encrypted with a reasonable perfor-

mance cost. The performance overhead of this countermeasure ranges between 2%

and 45% on average depending on the hardware configuration.

Overall, this work makes the following main contributions:

• The first work to examine cold boot attacks on non-volatile caches.

• A comprehensive algorithm of searching AES keys in cache images has been

developed.

• Two types of cold boot attacks have been performed and shown to be effective

on non-volatile caches.
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• A software-based countermeasure has been developed and proven to be effective.

5.2 Threat Model

The threat model assumed in this study is consistent with prior work on “cold

boot” attacks. In particular, we assume the attacker gains physical access to the

target device (e.g. an IoT device, a smartphone, a laptop, or a desktop computer).

Further, the attacker is assumed to have the ability to extract the microprocessor or

system motherboard from the device and install them into a debugging platform, on

which it is possible to extract sensitive information from the non-volatile caches. In

practice, such a platform is not hard to obtain. Many microprocessor manufacturers

offer debugging and development platforms that allow a variety of access functions,

including functionality to retrieve the cache content. For example, for the ARM

platform, the manufacturer offers the DS-5 development software [5] and associated

hardware DSTREAM Debug and Trace unit [6]. These tools enable debugging and

introspection into ARM processor-based hardware. The attacked microprocessor can

be plugged into a development board such as the Juno ARM Development Platform [7]

either directly or through the JTAG debugging interface. In the DS-5 software, the

Cache Data View can be used to examine the contents of all levels of caches and TLBs.

Particularly for caches, information such as cache tags, flags and data associated with

each cache line, as well as the index of each cache set, can be read and then exported

to a file for further processing.
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5.3 Cache Aware AES Key Search

In this work, we study the security of NVM-based microprocessor caches specifi-

cally by demonstrating AES key extraction attacks under the aforementioned threat

model.

5.3.1 Technical Challenges

An AES key search algorithm for the main memory has been presented by Halder-

man et al. in their seminal work on cold boot attacks [27]. However, doing so in caches

is not as straightforward. Particularly, the AES key search algorithm in Halderman et

al. [27] assumes that a complete AES key schedule is stored in a physically-contiguous

memory region. This is a relatively safe assumption in their case since the size of mem-

ory pages on modern computers are at least 4KB and a complete AES key schedule is

176 bytes (128-bit key/AES-128) to 240 bytes (256-bit key/AES-256). The algorithm

proposed by Halderman et al. can, therefore, simply scan the entire memory image

sequentially to search for potential AES keys [27]. However, neither the completeness

of the key schedule nor the contiguity of the memory spaces can be assumed in the

case of caches.

Non-contiguous memory space. Caches only capture a small non-contiguous

subset of the memory space. Since cache lines are typically only 32-128 bytes, data

that was originally stored in physically-contiguous memory is not necessarily stored

in contiguous cache regions. Therefore, the logically sequential AES key schedules,

typically 176 to 240 bytes, can be separated into multiple physically disjoint cache

lines as shown in Figure 5.1(a).
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Figure 5.1: Cache view of AES key schedule with 64-byte cache lines.

Incomplete key schedules. Another relevant cache property is that data stored in

the cache is subject to frequent replacements. Parts of a complete AES key schedule

can be missing from the cache, which makes our key search more difficult to conduct.

Examples of these situations are shown in Figure 5.1(b) and 5.1(c). Particularly, in

Figure 5.1(b), the cache line that holds the RK-2, RK-3, RK-4, and RK-5 has been

evicted from the cache.

5.3.2 Search Algorithm Design

To address these issues our algorithm will first reconstruct the cache image by

sorting cache lines by their physical addresses that we extract from the cache tags

and indexes, and then feed the reconstructed cache image to the AES key search
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function. In this way the logically contiguous data will still be contiguous in our

reconstructed cache image regardless of the cache architecture. Our algorithm then

performs either a QuickSearch or DeepSearch to search for the key in the reconstructed

cache image. Note that in this work we assume an inclusive cache model so that the

algorithm only examines the shared last-level cache (LLC) to simplify and accelerate

the search. However, our algorithm can be easily expanded to work on other cache

inclusiveness designs. Our AES key search algorithm is summarized in Algorithm 1.

Algorithm 1: AES key search algorithm.
Input: Original cache image
Output: List of keys found
begin

Sort cache image by cache line address
for each key_schedule candidate in sorted image do

enc_key← f irst 16 bytes in key_schedule
dec_key_schedule← reconstruct(key_schedule)
dec_key← f irst 16 bytes in dec_key_schedule
if defined(QuickSearch) then

Check relation between enc_/dec_key and firstRoundKey in
key_schedule/dec_key_schedule
if relation satisfied then

Output enc_/dec_key
end

end
if defined(DeepSearch) then

Check relation between any two consecutive round keys in
key_schedule/dec_key_schedule
if any relation satisfied then

Output enc_/dec_key
end

end
end

end
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QuickSearch. The DRAM cold boot attack was designed to deal with bit decay

errors that occur due to instability in volatile DRAM cells at low temperatures after

they are disconnected from power. To handle these errors, each candidate key is

expanded through all 10 rounds of the AES key schedule. The hamming distance

between the result of the expansion and the data that follows the candidate key in

memory is computed. If the hamming distance is below a predefined error threshold,

the candidate key is considered valid.

In contrast, the data from an NVM cache is expected to be error free, since most

non-volatile memory has a data retention time as long as 10 years and is robust

against soft errors [47]. As a result, our key search algorithm can be simplified and

made much faster by only generating and attempting to validate the first round of

the key expansion (16 bytes). If there is a match between the first round expansion

of the candidate key and the data stored in the cache, the candidate key is validated.

As long as the key itself followed by one round (16 bytes) of the expanded key exists

in the cache, our algorithm can successfully detect the key as shown in Figure 5.1(b).

We call this variant of the key search algorithm, QuickSearch. In our evaluation we

find this algorithm to be very effective at identifying the encryption key, if one is

present.

DeepSearch. The AES key schedule is stored on multiple cache lines since it is

larger (at least 176 bytes for AES-128 mode) than the typical cache block (32-128

bytes). Cache evictions can displace parts of the AES key schedule from the cache,

including the first round of the key expansion, which our QuickSearch algorithm uses

to validate the key. These cases are rare since they require the memory alignment to

be such that the encryption key falls at the end of a cache line and the first round of
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the key expansion is on a different line. To deal with these cases we develop a more

in-depth algorithm (which we call DeepSearch) that considers multiple rounds of the

key expansion. In this implementation, as long as the key itself is inside the cache

and there exist two consecutive rounds of expanded keys, our algorithm can find the

key as shown in Figure 5.1(c).

The downsides of DeepSearch is that it runs considerably slower than QuickSearch

and the search has some false positives. However since the attacker will only perform

this DeepSearch once on the cache image, the slower runtime won’t have any effects.

As for the false positives, they are also in a manageable range. Our experiments

involve searching millions of cache snapshots with a number of benchmarks and cache

configurations for AES keys. To keep the runtimes manageable, the majority of our

experiments are conducted using QuickSearch.

5.3.3 Implementation-Specific Considerations

We demonstrate the AES key extraction attack against dm-crypt, a cryptographic

module that is used in mainstream Linux kernels. As will be explained in Section 5.4,

the specific target of our demonstrated attacks is the disk encryption/decryption

application, LUKS (Linux Unified Key Setup), of the Ubuntu OS, which by default

invokes the dm-crypt kernel module for disk encryption/decryption using AES-XTS

mode [2].

In the AES implementation of dm-crypt the decryption key schedule is different

from the encryption one. We illustrate the key schedule for the decryption process

in Figure 5.2(a). The decryption key schedule is first reversed in rounds from the

encryption key schedule. An inverse mix column operation is then applied to rounds 1
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Figure 5.2: Details on AES implementation dependent modifications to the key search
algorithm.

through 9 of the key schedule. As a result, we need to perform searches for encryption

keys and decryption keys separately. Specifically, before searching for decryption keys

we first convert the candidate schedules back to the encryption key schedule format.

Another artifact that affects our key search algorithm is specific to little-endian

machines, which store the least significant byte in the lowest address. dm-crypt

adopts an implementation which stores the AES key schedules as an array of words

(e.g. 4 bytes) instead of bytes. This leads to a mismatch in the representation on

little-endian architectures, as shown in the first line of Figure 5.2(b). Our search

algorithm takes into account this artifact and convert the little-endian representation

to the big-endian one before conducting the key search.
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5.3.4 Discussion on Scalability

Our key search algorithm is designed for AES on inclusive cache models. However

it can also be applied to other cache models (exclusive and non-inclusive) and modified

to work with other encryption algorithms.

Other cache models. There are two ways to apply our key search algorithm when

the assumption of cache models changes to exclusive or non-inclusive. The first way

is to directly apply the algorithm sequentially to each cache at all levels. Since it is

highly likely that the AES key and the first round of the key schedule exist in the

same cache line, our QuickSearch algorithm will have a high probability of finding the

key if it is actually in any of the caches. In this context our algorithm will just be

slower since it will search all caches for the key instead of only examining the LLC. To

deal with rare cases that AES key falls at the end of a cache line in one cache while

the other parts of the key schedule are in cache lines of other caches, we can use the

second way to apply our algorithm by reconstructing the cache image with contents

of all levels of caches. In this reconstruction process we sort cache lines from all the

caches by their physical addresses and ignore the ones with the same physical address

(in non-inclusive model). Then we can either apply QuickSearch or DeepSearch on

this reconstructed cache image to search for keys.

Other encryption algorithms. Our cache-aware key search algorithm can also be

modified to work with other encryption algorithms such as RSA [66], DES [1], etc.

One of the key modifications is to find data relationships inside the encryption key

structures of those algorithms and develop mathematical models to validate expected

data with the data stored in caches, similarly as we show the AES example in Figure
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5.1. To reconstruct cache data for search we can simply rely on our current algorithm

with modifications as needed. Halderman et al. [27] has already explored this topic

in the main memory context. We leave this work on caches as future work.

5.4 Evaluation Methodology

Because microprocessors with NVM caches are not currently available in com-

mercial computers, we therefore relied on a full system simulator to conduct our

experiments. Specifically, we modeled an 8-core ARMv8-based processor using the

gem5 simulator [9]. Cold boot attacks have been demonstrated on both x86 and

ARM architectures in the past. Our simulation selected ARMv8 architecture for its

broader adoption in mobile devices which are particularly vulnerable to the physical

access required by cold boot attacks. Our results should be generally applicable to

other microprocessors.

We simulated a traditional 2-level cache hierarchy with private L1 instruction and

data caches for each core and a shared inclusive L2 cache as the last level cache. Our

cache configuration parameters are in line with the ones used in many modern com-

puter systems. Since our key search algorithm focuses on the LLC, we experimented

with different LLC sizes from 2MB to 128MB (8MB as the default size of LLC if not

explicitly stated). We examine a broad range of LLC sizes from small (2MB) to very

large (128MB). The hardware configurations of our simulated system are summarized

in Table 5.1.

The system is configured to run Ubuntu 14.04 Trusty 64-bit operating system.

We installed the cryptsetup application - LUKS (Linux Unified Key Setup) in the

Ubuntu OS and used it with the dm-crypt module in Linux kernel to encrypt a 4GB
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Hardware Configuration
Cores 8 (out-of-order)
ISA ARMv8 (64-bit)
Frequency 3GHz
IL1/DL1 Size 32KB
IL1/DL1 Block Size 64B
IL1/DL1 Associativity 8-way
IL1/DL1 Latency 2 cycles
Coherence Protocol MESI
L2 Size 2, 4, 8 (default), and 128MB
L2 Block Size 64B
L2 Associativity 16-way
L2 Latency 20 cycles
Memory Type DDR3-1600 SDRAM [48]
Memory Size 2GB
Memory Page Size 4KB
Memory Latency 300 cycles
Disk Type Solid-State Disk (SSD)
Disk Latency 150us

Table 5.1: Summary of hardware configurations.

partition of a simulated hard drive. The disk encryption/decryption algorithm we

configured for LUKS was AES-XTS [2] with 128-bit keys.

We ran SPEC CPU2006 benchmark suite [28] stored in the encrypted hard drive

to simulate applications that run on the target system. SPEC CPU2006 benchmark

suite includes integer and floating-point single-threaded benchmarks among which

some are more computation bound and others are more memory bound [37]. To

keep the simulation time reasonable, we use the checkpoint functionality provided by

gem5 [9] to bypass the OS boot-up phase and ran each benchmark with up to 1 billion

instructions. For experiments which require periodically taking LLC image snapshots
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Mixed Benchmark Group

mixC calculix, dealII, gamess, gromacs,
h264ref, namd, perlbench, povray

mixM astar, cactusADM, GemsFDTD, lbm,
mcf, milc, omnetpp, soplex

mixCM dealII, gamess, namd, perlbench,
astar, cactusADM, lbm, milc

Table 5.2: Overview of mixed benchmark groups.

we use a sampling interval of 1 million instructions. To further test our attack sce-

nario and countermeasure approach in a multi-programmed/multi-threaded environ-

ment, we also ran several groups of mixed benchmarks from SPEC CPU2006 - mixC,

mixM, and mixCM. As detailed in Table 5.2, mixC contains 8 computation-bound

benchmarks, mixM contains 8 memory-bound benchmarks, and mixCM contains 4

benchmarks from mixC and another 4 benchmarks from mixM.

5.5 Attack Analysis

To analyze the severity of the vulnerabilities, we examine the probability of suc-

cessfully retrieving disk encryption keys from a processor’s last level cache under two

attack scenarios.

5.5.1 Random Information Harvesting

We first investigate an attack scenario in which the attacker gains access to the

target machine and disconnects the processor from the power supply at an arbitrary

point during the execution. We make no assumptions that the attacker has a way to

force a certain code sequence to execute. This is typical, for instance, when a defec-

tive device that stores sensitive data is discarded without proper security measures.
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Experiment Label & Description

NoNEON System without ARM’s cryptographic
acceleration support

NEON System with ARM’s cryptographic
acceleration support

mixC SPEC CPU2006 computation bound
benchmark mix

mixM SPEC CPU2006 memory bound
benchmark mix

mixCM SPEC CPU2006 computation bound plus
memory bound benchmark mix

STAvg Geometric mean of single-threaded
benchmarks from SPEC CPU2006

Table 5.3: Summary of experiment and workload labels.

Another example is when an attacker steals a device and physically disconnects its

power supply before removing the processor. Since the system could have failed at

any point, we would like to examine the probability of successfully identifying and

retrieving the disk encryption key as a function of workload, cache size, etc.

To study the probability of success for such an attack we take periodic snapshots of

the LLC, at intervals of roughly 1 million instructions. We then run the QuickSearch

key search algorithm on each cache snapshot. Figure 5.3 shows the probability of

finding the AES keys in the 8MB last level cache for different benchmarks. We

examine both systems with and without ARM’s cryptographic acceleration (NEON)

support. For easy reference, Table 5.3 summarizes the labels we use for different

experiments.

To better analyze results we classify the SPEC CPU2006 benchmarks into two

categories - compute-intensive and memory-intensive [37]. We can see from the results

in Figure 5.3 that when running computation bound benchmarks the probability of
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Figure 5.3: Probability of finding AES keys in 8MB LLC with various types of bench-
marks.

finding AES keys in the cache is higher than running memory bound benchmarks. On

average, there is a 76% probability of finding AES keys in the system without NEON

support when running computation bound benchmarks and a 26% probability when

running memory bound benchmarks.

When the system is configured with NEON support, the probability of finding the

key in the cache drops for both classes of benchmarks to 41% and 14% respectively.

This is because the NEON technology stores encryption keys in vector registers that

are large enough to hold the key schedule. These registers are also infrequently used

for other functions which means they don’t have to be spilled to cache (and memory).

As a result, in processors with NEON support the encryption key is read from memory

much less frequently, leading to better resilience to this type of attack. A typical case

is seen in perlbench with 96% for NoNEON and 49% for NEON. However there are also

exceptions as seen in povray (100% for both systems) and gobmk (97% for NoNEON

and 4% for NEON). On average, the probability of finding the key in the random
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attack is 40% for the system without NEON support and 22% for the system with

NEON support.

There are two principal factors that affect the probability the encryption key is

found in the cache at random points during execution. The first is how recent the last

disk transaction was, since encrypted disk access requires the AES key to be brought

into the cache. The second factor is the cache miss rate, since the higher the churn of

the data stored in the cache the sooner an unused key will be evicted. Computation

bound benchmarks in general have a smaller memory footprint so that their cache

miss rates are lower, allowing keys to reside in the cache for longer. Memory bound

benchmarks, on the other hand, have a larger memory footprint associated with a

higher cache miss rate therefore evicting keys more frequently. Figure 5.4 illustrates

these effects for selected benchmarks running on systems without NEON support,

showing for each cache snapshot over time whether the key was found or not (1 or

0). The figure also shows the cumulative miss rate of the LLC over the same time

interval.

Benchmark dealII shown in Figure 5.4a is a good illustration of the behavior of a

compute-bound application. The disk encryption key is brought into the cache early

in the execution as the application accesses the disk to read input data. The miss

rate is low throughout the execution of the application which means the key is never

evicted and the probability of finding the key while running this application is 100%.

Figure 5.4b shows the behavior of a memory bound application, bzip2. Keys are

brought into the cache early in the execution and remain in the cache for a period

of time while the miss rate is low. The miss rate, however, spikes as the application

begins processing large data blocks for compression. This evicts the key from the
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cache. A disk operation causes the key to be brought into the cache again, but the

consistently high miss rate causes the key to be evicted again shortly. Even though

later in the execution cache miss rate drops, the lack of disk accesses keep the key

away from the cache for the rest of this run. Note that for clarity we only show a

fraction of the total execution.

While most benchmarks behave as their broader category, there are a couple of

exceptions as shown in Figure 5.4c and 5.4d. sjeng is a computation bound benchmark

with high cache miss rate therefore AES key remains in the cache for a small fraction

of the execution. GemsFDTD is a memory bound benchmark but it has an overall

low miss rate and therefore the key persists in the cache throughout the execution.
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(c) sjeng
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Figure 5.4: AES key search trace with cumulative LLC miss rate information of (a) dealII,
(b) bzip2, (c) sjeng, and (d) GemsFDTD benchmarks running on systems
without ARM’s cryptographic acceleration (NEON) support.

80



We also collect results for multi-program mixed workloads to increase system and

disk utilization and cache contention. The results are included in Figure 5.3 as mixC,

mixM, and mixCM. The benchmark applications included in each mix are listed in

Table 5.2. As expected, when the system is fully utilized, with one application running

on each core (for a total of 8), the probability of finding the key increases. This is

because each application accesses the disk and those accesses occur at different times,

causing the encryption key to be read more frequently. The compute bound mixC

shows 100% probability of finding the key for both systems (with and without NEON

support).

While a system with high utilization is clearly more vulnerable, a mitigating factor

is that cache contention is also higher when many threads are running. As a result,

cache miss rates are also higher and the key may be evicted more often. This is

apparent when we examine the memory-bound mixM workload which shows 66%

probability without NEON support and 76% with NEON support. Even with the

higher miss rate, the fully-loaded system is clearly more vulnerable than lightly-loaded

system, as seen in the single-threaded experiments. When a mix of both compute

and memory bound applications is used (mixCM) the probability of finding the key

is 85% for NoNEON and 82% for NEON.

We also note that the NEON-accelerated system is almost as vulnerable as the

system without hardware acceleration when the system is running the mix workloads.

This is likely caused by the more frequent spills of the vector registers when context

switching between the kernel thread running the encryption/decryption process and

the user threads. Spilling the vector registers holding the encryption key increases
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Figure 5.5: Overall probability of finding AES keys in LLCs with various sizes.

reads and writes of the key from and to memory, exposing it to the cache more

frequently.

Figure 5.5 shows the overall probability of finding AES keys in systems with

different sized LLCs. As expected, larger caches increase the system vulnerability to

this type of attack. We can see that as cache size increases the probability of finding

keys also increase across all the benchmarks. With 2MB cache the average probability

of finding AES keys is from 4.6% to 85% depending on the system and application;

for a 128MB LLC the probability of a successful attack ranges from 70% to 100%.

Increasing the cache size reduces capacity misses therefore increasing the fraction of

time the key spends in the cache.

Vulnerability in disk encryption vs. decryption. In our experiments we find

that disk encryption/decryption operations yield different time sensitivity of keys

appearing in the caches. For decryption operations (disk reads) keys immediately

appear in the cache while for encryption operations (disk writes) keys will appear in
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the cache with a substantial delay following the execution of the disk write operation.

This is because for disk write operations Linux uses a page cache to buffer writes to

the disk in order to improve performance. Only when the page cache is full, or when

the encrypted disk is unmounted, will the contents of the page cache be written back

to the encrypted disk. The AES keys will be retrieved and will appear in the cache

at this time. Running the sync command after a write operation will force a write

to disk and encryption keys will then immediately appear in the cache.

5.5.2 Targeted Power-off Attack

The second attack scenario we consider is one in which the attacker is able to

trigger a graceful or forced power-off sequence before physically removing the pro-

cessor. In this attack scenario, the attacker aims to use the power-off sequence to

deterministically ensure the disk encryption keys are found in the cache. Since the

power-off sequence involves unmounting the disk, this likely results in a series of en-

cryption/decryption transactions that will bring the encryption key into the cache.

During the system shutdown process, the attacker can stop the execution at any time

to search for secret keys or simply wait until the device is completely powered off

to examine cache images for secret keys. The goal of this attack scenario is to find

a reproducible and reliable way to obtain the encryption key from a compromised

system.

Figure 5.6 shows the sequence of operations executed after running the poweroff

command. There are two operations (highlighted in green) in the power-off sequence

which will bring disk encryption keys to the cache. The first operation (operation 2)

is when operating system asks all remaining processes to terminate. In this operation
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root@aarch64 -gem5:/# poweroff
Session terminated , terminating shell...exit
...terminated.
* Stopping rsync daemon rsync [ OK ] // 1
* Asking all remaining processes to terminate... [ OK ] // 2
* All processes ended within 1 seconds... [ OK ] // 3
* Deactivating swap... [ OK ] // 4
* Unmounting local filesystems... [ OK ] // 5
* Stopping early crypto disks... [ OK ] // 6
* Will now halt // 7

[ 604.955626] reboot: System halted

Figure 5.6: poweroff command triggered operation sequence.

the process in charge of disk encryption will be terminated. This will invoke the sync

system call to flush data from the page cache to the encrypted disk which requires

reading the AES keys. Before the system is actually powered off, all filesystems

must be unmounted as shown in operation 5. The encryption keys are again used in

unmounting the encrypted disk drive and they will again appear in the cache.

We experimented with two power-off methods in the evaluation - normal and

forced. We examine the probability of successfully identifying the key under the two

scenarios. Table 5.4 summarizes the results of our power-off attacks on various LLC

sizes. The command associated with each power-off method is also listed in Table

5.4.

We can see from the results that starting from LLC size of 8MB keys will remain

in the cache no matter what power-off methods we use. For 2MB and 4MB LLC sizes,

keys will exist in the cache when the forced power-off method is used but not for the

normal one. For the smaller cache sizes like 2MB or 4MB, after keys are brought into
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Mode Command Keys exist in cache after power-off?
2MB 4MB 8MB 128MB

Normal Power-off poweroff (-p) N N Y Y
Forced Power-off poweroff -f Y Y Y Y

Table 5.4: Summary of targeted power-off attack results.

the cache other operations which don’t involve encryption disk accesses may bring

new data in and get AES keys evicted. Therefore we won’t see the keys after system

is powered off. However for larger caches with 8MB or 128MB the keys will stay in

the cache after system shutdown regardless of the method.

Forced power-off is different from normal power-off in that it doesn’t power-off

the system in a graceful way. This means forced power-off will only perform the

action of powering off the system. However in order to power off the system the local

filesystems are still going to be unmounted to prevent data loss. In this process the

keys will be brought into the cache and stay inside the cache after system is powered

off in all cache sizes we tried in the experiments. Forced power-off attacks virtually

guarantee that the system we investigate, in all configurations, will expose the secret

keys in the NVM cache. This shows that a potential attacker has a reliable and

reproducible mechanism to compromise disk encryption keys.

Figure 5.7 shows the presence of the disk encryption keys in the cache throughout

the normal power-off sequence for the NoNEON and NEON systems, for different

LLC sizes. We can see that the encryption key appears in the cache at roughly the

same time following operation no. 2 in the power-off sequence (Figure 5.6). It is

then quickly evicted in the 2MB LLC system, but persists for increasingly longer
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Figure 5.7: AES key search sequence of normal power-off from start to completion with
various sizes of LLCs.

time intervals as the size of the LLC increases. For the 128MB cache, the key is

never evicted before the system halts. The key is again read into the cache following

operation no. 5 (unmounting the filesystem). In the 2MB and 4MB cases the key

is again evicted before the system halts. Even for these systems an attacker could

force the key to remain in the cache in a predictable way. The attacker would simply

have to trigger the power-off sequence and then disconnect the processor from the

power supply after a predetermined time period before the key is evicted. Since the

power-off sequence is fairly deterministic, this approach has a high probability of

success.
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5.6 Countermeasures

In order to mitigate threats of cold boot attacks against NVM caches, we propose a

simple and effective software-based countermeasure. Our countermeasure is designed

to force secret keys to be only stored in encrypted main memory and bypass the NVM

cache throughout the execution. We develop a software API for declaring memory

blocks as secrets to inform the system that their storage in the cache is not allowed.

While our countermeasure applies to any secret information stored by the system,

we use the disk encryption example as a case study to illustrate the concept. It is

worthwhile noting that our solution only protects NVM caches from cold boot attacks.

We assume the main memory is encrypted using existing techniques so that cold boot

attacks no longer work against the main memory [10, 29, 42, 44, 65, 73, 80, 81]. We

emphasize that encryption of caches is infeasible given the requirements of low access

latency of caches.

5.6.1 Countermeasure Design

The process of decrypting an encrypted storage device in a system typically in-

volves using the cryptsetup command-line utility in user space which calls the

dm-crypt kernel module. This process is illustrated in Figure 5.8. The kernel es-

tablishes within its internal cryptographic structures the key to be used for accessing

the encrypted device that has been selected via the cryptsetup utility. Although

the process of establishing the key inside the kernel entails generating multiple copies

of the key, the relevant block cipher routines in the crypto module dutifully use

memset() to wipe the key after a new copy is created. As such, we only focus on the

final memory location where the key is stored which is tracked by the crypto_aes_ctx
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Figure 5.8: Countermeasure deployment in a system with encrypted storage.

structure. In our solution, we devise a countermeasure that is applicable to kernels

that are configured to utilize hardware acceleration, as well as default kernels config-

ured for environments where such acceleration support is unavailable.

Systems with hardware cryptographic support. Modern systems usually make

use of hardware acceleration for cryptographic operations. We assume the kernel

is built with the AArch64 accelerated cryptographic algorithms that make use of

NEON and AES cryptographic extensions defined in the ARMv8 instruction set.

This is done by including the CONFIG_CRYPTO_AES_ARM64_*, CONFIG_ARM64_CRYPTO,

and KERNEL_MODE_NEON kernel parameters as part of the build. This translates to

using architecture specific cryptographic libraries defined in /arch/arm64/crypto of

the Linux source. In order to eliminate the presence of cryptographic keys in the

cache, our solution involves marking the page associated with the address of the

crypto_aes_ctx structure as uncacheable. We implement the necessary changes for
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this approach within xts_set_key() routine located in aes-glue.c where we walk

through the page table in search of the appropriate page table entry that maps to the

designed page. Once we locate the correct PTE, we set the L_PTE_MT_UNCACHED flag

to label the page as uncacheable.

A similar approach can be applied to x86 systems by inserting an entry into the

Memory Type Range Register (MTRR) that corresponds to the region of interest.

For newer x86 systems, the page attribute tables (PAT) can be used instead of the

MTRR. Although the solution operates at a page size granularity—that is, the small-

est size of memory blocks to be marked as uncacheable is a page—the performance

impact is minimal for small page sizes. We also note that our experiments show that

this approach performs better than a solution that periodically evicts the keys from

the cache. This is because a periodic eviction approach requires adding changes to

the ce_aes_xts_encrypt() and ce_aes_xts_decrypt() routines which would incur

overhead for every block of data that is encrypted or decrypted. It also introduces a

window of vulnerability where the keys could be recovered in cases where an attacker

initiates a forced power-off (ungraceful shutdown) of the system while storage is being

accessed.

Systems without hardware cryptographic support. If the kernel lacks support

of accelerated cryptographic hardware, we use the default cryptographic library de-

fined in the /crypto directory of the Linux source. This boils down to modifying the

crypto_aes_set_key() in aes_generic.c. However, we use a similar approach to

the one described previously by marking the page which contains the crypto_aes_ctx

structure to be uncacheable. The primary difference is that encryption and decryp-

tion that are used in aes_encrypt() and aes_decrypt() respectively do not make
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NoNEON NEON Countermeasure
Single-threaded 23 - 70% 5 - 77% 0%Benchmark
mixC 85 - 100% 80 - 100% 0%
mixM 26 - 100% 20 - 100% 0%
mixCM 38 - 100% 34 - 100% 0%
Normal Power-off 0 - 100% 0 - 100% 0%
Forced Power-off 100% 100% 0%

Table 5.5: Probability of finding AES keys with and without the countermeasure.

use of the 128-bit NEON registers. As such, the performance impact with this ap-

proach is higher since multiple fetches of the expanded key from memory are needed

for each round of encryption or decryption.

5.6.2 Countermeasure Effectiveness

Table 5.5 summarizes the effectiveness of our countermeasure. We can see that

by marking the AES key structure uncacheable our countermeasure completely elimi-

nated the security vulnerability of NVM caches for system with and without processor

cryptographic acceleration support. All attack scenarios we examined are now unable

to find the disk encryption keys in the cache, regardless of the benchmarks running

on the system. The targeted power-off attacks also fail to identify any AES keys in

the cache once the countermeasure is applied.

5.6.3 Performance Overhead

The effectiveness of our countermeasure comes with the cost of some performance

overhead. Figure 5.9 shows the performance overhead for different types of bench-

marks executed in the context of our random attack. In general, the overhead for the

90



 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2

calculix

dealII

gam
ess

grom
acs

h264ref

nam
d

perlbench

povray

sjeng

specrandf

specrandi

tonto
w

rf
G

eoM
eanC

astar
bw

aves

bzip2

cactusA
D

M

gcc
G

em
sFD

TD

gobm
k

hm
m

er

lbm
leslie3d

libquantum

m
cf

m
ilc

om
netpp

soplex

sphinx3

X
alan

zeusm
p

G
eoM

eanM

G
eoM

ean

m
ixC

m
ixM

m
ixC

M

N
o
rm

al
iz

ed
 E

x
ec

u
ti

o
n

 T
im

e

2.16 2.77 2.95 2.42

Computation Bound Memory Bound

Countermeasure-NoNEON Countermeasure-NEON

Figure 5.9: Average countermeasure performance overhead of all sizes of LLCs with dif-
ferent benchmarks.

system with NEON support is very low, averaging 2% for the single-threaded bench-

marks. The overhead increases substantially if the system has no NEON acceleration

– up to 45% for single-threaded benchmarks. Performance overhead of the counter-

measure correlates directly with the number of encryption/decryption transactions.

Since the encryption key is uncacheable, every access to the key will result in a slow

memory transaction (300 cycles vs. 20 cycles for the LLC as shown in Table 5.1).

The NEON hardware support helps alleviate this overhead substantially by storing

the key in vector registers and bypassing slow memory accesses for most transactions.

The performance overheads are higher as expected for multi-programmed work-

loads because they perform more encryption/decryption transactions overall. How-

ever in this case systems with NEON support is again better at absorbing these

overheads than systems without NEON support. Overheads for the three workload

mixes are 64% in NoNEON and 14% in NEON for mixC, 55% in NoNEON and 3%

in NEON for mixM, and 142% in NoNEON and 12% in NEON for mixCM.
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When comparing between compute and memory bound benchmarks, we can see

that there is no significant difference for the NEON group (computation bound 3%

vs. memory bound 1%). However this difference increases to 27% in the NoNEON

group due to much more cache hits now are all translated into memory accesses in

the computation bound benchmarks than those in the memory bound benchmarks.

5.6.4 Discussion

The performance overhead due to our countermeasure can be reduced with soft-

ware optimization or hardware support.

Optimization on software-based countermeasure. Our current countermea-

sure strictly mark secret information as uncacheable throughout system execution.

However one observation here is that when the authenticated user is currently using

the system, it is unnecessary to keep the sensitive data uncacheable since physical

cold boot attacks are unlikely to happen when the user is in possession of the device

(or at least it is not necessary as cache/memory data can be dumped directly using

software approaches). One possible performance optimization is to enable two modes

of handling secret information—cacheable and uncacheable. When user is logged in,

cacheable mode on secrets is enabled so that user won’t experience any performance

degradation of the system. Only when user is logged off or the system is locked, secret

information inside caches will be erased and then uncacheable mode will be turned

on to protect from cold boot attacks.

Hardware-based countermeasure. Another approach for reducing performance

overhead is to rely on a hardware-based countermeasure. One possible solution is to

leverage existing write buffers associated with non-volatile caches [26, 74, 78]. These
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buffers are implemented with volatile memory (usually SRAM) which are necessary

because latency associated with write operations in NVM is too high. Storing secrets

in such volatile memory modules will bypass the cache. We leave exploration of the

feasibility of this method as future work.

5.7 Conclusion

This work demonstrates that non-volatile caches are extremely vulnerable to cold

boot attacks. We successfully conducted two attacks on disk encryption keys—

random attacks and targeted power-off attacks. Our experiment results show that

the probability of finding the secret AES keys in NVM caches ranges from 5% to

100% with varying workloads and cache configurations in random attacks and always

reaches 100% in targeted power-off attacks. To defend computer systems against these

attacks we developed a software-based countermeasure that allocates sensitive infor-

mation into uncacheable memory pages. Our proposed countermeasure completely

mitigates cold boot attacks against NVM caches. We hope this work will serve as a

starting point for future studies on the security vulnerabilities of NVM caches and

their countermeasures.
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CHAPTER 6

Related Work

The work conducted in this dissertation relies on an extensive body of research that

mainly falls into four categories: STT-RAM, near-threshold architectures, variation-

aware thread mapping, and cold boot attacks and defenses.

6.1 STT-RAM

As STT-RAM has gained more and more attention recently, many researchers

have focused on solving the long-latency and high-energy write issues associated with

this technology in order to make it a feasible SRAM replacement. For instance, Zhou

et al. [86] proposed Early Write Termination to terminate redundant bit writes at

their early stages to reduce write energy. Other work [72, 75] has explored factors

which could affect data retention time of STT-RAM cells and found that there is a

trade-off between non-volatility and write performance and energy of those cells. By

relaxing the non-volatility requirement they observe that they can improve energy by

using shorter write times.

Guo et al. [26] explored replacing large, wire-delay dominated SRAM arrays, such

as caches, TLBs, and register files with STT-RAM. Some of the latency-critical units
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as well as pipeline registers are implemented using SRAM. They have built an in-

order 8-core processor with this hybrid design. Their goal is to save energy by replac-

ing high-leakage CMOS with low-leakage STT-RAM. Their design is similar to our

NVNoSleep system except that we use out-of-order cores and hybrid SRAM/STT-

RAM structures for memory units that are updated frequently. We show that signif-

icant energy reductions can be achieved by aggressively turning cores off when idle,

in addition to simply replacing SRAM with STT-RAM.

Previous work [69] has proposed building the last level cache or main memory

with non-volatile memory like STT-RAM or PCRAM (Phase Change RAM) to pro-

vide checkpointing capabilities for reliability and power reduction. Their solution

is targeted at coarse-grained server/system level checkpoints that can tolerate much

higher checkpointing/restore overheads. Our checkpointing has much lower perfor-

mance overhead.

Kvatinsky et al. [40] proposed a memristor-based multistate pipeline register de-

sign to provide low penalty switch-on-event multithreading capabilities.

6.2 Near-Threshold Architectures

Previous work by Zhai et al. [83] has proposed grouping several slower near-

threshold cores into a cluster that shares a faster L1 cache in order to eliminate cache

coherence traffic. This can speed up system performance and also reduce coherence

energy. In their design they applied a relatively higher voltage to the shared SRAM

L1 cache and found the optimal energy efficiency configuration is 2 cores per cluster

with 2 clusters. They did not explicitly consider variation effects or heterogeneous

core frequencies in their design. We use nominal voltage STT-RAM to build the
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shared L1 cache. In our design the STT-RAM shared cache is much faster than the

cores, making much larger clusters (16 cores) become optimal. In addition, our work

takes advantage of this shared cache design to perform dynamic core consolidation to

further optimize energy efficiency.

Work by Karpuzcu et al. [39] proposes a near-threshold clustered manycore design

which uses a single Vdd domain with dynamic clustering of cores running at the

same frequency. Frequency variation is only allowed between these clusters. They

developed a core assignment algorithm to perform core-to-job mapping to make sure

jobs are run on selected cores with the same frequency and at the same time deliver

high performance per watt. Our approach is transparent to the OS and uses low-cost

dynamic core consolidation to exploit the optimal hardware resources for running

benchmarks at different phases.

6.3 Variation-Aware Thread Mapping

Variation-aware thread mapping has been explored by prior work [14,32,76], some-

times in conjunction with active power management [30]. They optimize thread allo-

cation in variation-induced heterogeneous CMPs to improve performance and energy.

In general, they rely on exposing heterogeneity to the system/application and using

optimization algorithms - that run either in hardware or software - to find an opti-

mized mapping of application threads to cores.

Miller et al. [50] proposed to provide dual voltage rails to each individual core

in a process variation aware near-threshold microprocessor chip. This allows cores

to frequently switch voltage rails to speed up and slow down execution and ensure

equal progress across cores. While effective, their approach is costly to implement. It
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requires two power distribution networks to be routed to each core and large power

gates to enable fast rail switching.

Other work has addressed heterogeneity-by-design [45,58], examining how hetero-

geneous cores can be used to form big-little core pairs or leader-follower core groups

to save energy or improve performance. Shelepov et al. [70] developed an OS-based

thread scheduler for heterogeneous systems that could also be adapted to variation-

induced heterogeneity.

6.4 Cold Boot Attacks and Defenses

The idea of cold boot attacks in modern systems was first explored by Halderman

et al. [27]. Their work consisted of extracting disk encryption keys using information

present in main memory (DRAM) images preserved from a laptop. The idea of this

type of attack builds on the premise that under low temperature conditions, DRAM

chips preserve their content for extended time durations. The attack also relies on

the fact that AES keys can be inferred by examining relationships between subkeys

that involve computing the hamming distance information. The AES key search

algorithm has been proposed in [27] as well. Muller et al. [56] later expanded cold

boot attacks to mobile devices. When volatile memories such as SRAM and DRAM

are replaced by non-volatile ones (e.g. STT-RAM, PCM, and ReRAM) in future

computers, cold boot attacks will become much easier to perform since data will be

indefinitely preserved after cutting off power supply for several years without the need

for any special techniques such as cooling. Our work is the first work to study cold

boot attacks in the context of non-volatile caches.
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Prior work can be classified into two types of countermeasures for addressing

the issue of cold boot attacks. The first class of countermeasures involves handling

cold boot attacks by securing the destination side of data. Several researchers have

proposed encrypting memory data in order to prevent attackers from easily extracting

secret information from main memory [10, 29, 42, 44, 65, 73, 80, 81]. Although this

approach is effective for main memory, encryption techniques are challenging to apply

to caches because of their large performance overhead. Other researchers, on the other

hand, have examined a second class of countermeasures that involves handling cold

boot attacks from the source side that generates the data. As such, this body of work

proposes keeping secret keys away from main memory during system execution [12,

23–25,54,55,59,71,84]. The idea behind this approach is to keep secret keys stored in

CPU registers, caches, and other internal storage during system execution. This way

secret keys wouldn’t be found in main memory altogether, and as a result, render cold

boot attacks ineffective against main memory subsystems. However these proposed

approaches haven’t considered the vulnerability of data stored in CPU caches since

keys stored in CPU registers and other internal storage can still be fetched into caches

during execution [23, 24, 54, 55, 71]. Moreover, a subset of this work even suggests

storing secret keys inside CPU caches [12, 25, 59, 84]. This motivates our work for

studying cold boot attacks in the context of non-volatile caches.
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CHAPTER 7

Conclusion

The work presented in this dissertation has explored using STT-RAM to build

low-power and secure processors. NVSleep demonstrates a low-power microprocessor

framework that leverages STT-RAM to implement rapid checkpoint/wakeup of idle

cores to save power. Respin presents an architecture that consolidates the private

caches of near-threshold cores into unified L1 instruction/data caches that use STT-

RAM to save leakage power and improve performance. In addition, a novel hardware

virtualization core management mechanism is developed to increase resource efficiency

and further save energy. Vulnerabilities of non-volatile memory as processor caches

when exposed to “cold boot” attacks have been studied in depth in NVInsecure.

Several types of proof-of-concept attacks have been successfully performed and an

effective software-based countermeasure has been implemented to help address the

security vulnerabilities of NVM caches.
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