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• Idle/leakage power: source of inefficiency in CMPs

• Expected to increase in future technologies

• Cores are often idle, wasting power

• Power gating can help

• Functional units with little or no states (ALUs) – power gating OK

• Most FUs have significant states (RF, ROB, …) – power gating expensive

• NVSleep Idea: non-volatile memory can enable fast micro-checkpointing

• Reduce the performance overhead of power gating

• Enable power gating during short idle intervals (e.g. stalls on LLC misses)

Motivation
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Idle Power Breakdown

Idle (30%)

Active (70%)

Shimpi et al., The Haswell Review: 
Intel Core i7-4770K & i5-4670K 
Tested, www.anandtech.com
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• We use Spin Transfer Torque RAM, a new type of magnetic memory

• STT-RAM can be a good candidate for NVSleep checkpointing

• STT-RAM has other good characteristics:

• ~4X higher density than SRAM, better scalability

• Infinite write endurance

STT-RAM in NVSleep
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NVSleep checkpointing

Non-volatility

Low latency access

Low energy

STT-RAM

Long data retention time (as long as 10 years)

Fast read (~0.9X SRAM)

Low energy read (~0.7X SRAM)
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and slow write (~ 20X SRAM)

and high energy write
(~20X SRAM)
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• NVSleep leverages STT-RAM for on-chip storage structures

• Write latency-tolerant units (caches, TLBs, etc.) are implemented with STT-RAM 

(combined with SRAM write buffers to help hide long latency writes)

• Write latency-sensitive units (RF, ROB, etc.) are implemented with hybrid 

SRAM/STT-RAM design

NVSleep Framework
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SRAM/STT-RAM hybrid Design
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• SRAM for primary storage

• STT-RAM shadow of identical size 

used for micro-checkpointing

• Banked design to parallelize 

checkpointing process
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• NVSleepMiss: Hardware-driven

• Ideal for short idle events, detected by hardware

• Our implementation: cores sleep on LLC misses

• NVSleepBarrier: Software API

• Exposes NVSleep to the system software

• Can be used by the OS or applications to “suspend” cores quickly

• Ideal for software observable idle events such as blocking on synchronization 

(e.g. barriers, locks, etc.)

• Our implementation: cores sleep when blocked on barriers

NVSleep Implementation
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1. LD issued, missed in L1

2. LLC miss reported by LLC

3. Sleep signal sent to Core 0

4. Checkpointing starts

5. Core 0 goes to sleep after stalls

6. Missing data returns

7. Wakeup signal sent to Core 0

NVSleepMiss: Hardware-driven
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• Checkpointing and wakeup of cores are coordinated by the L1 cache 

controller of each core

• Hardware-driven checkpointing/wakeup sequence:

4 CKP

5 Sleep
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• Expose micro-checkpointing system to software through API

• Dedicated sleep(0xADDR) instruction

• When executed on a core – it will shut down

• Wakeup triggered by another core through write operation to 0xADDR

NVSleepBarrier: Software API
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• Example application in barrier:

• All but last thread – sleep(&sense)

• Last thread writes to sense, 

wakes-up all other threads

void barrier(int count, int sense, int num_threads)
{

int local_sense;
local_sense = !sense;

if (count != (num_threads - 1)) {
while (local_sense != sense) {

sleep(&sense);
}

}
else {

count = 0;
sense = local_sense;

}
}



• Software-driven checkpointing/wakeup sequence:

NVSleepBarrier: Software API
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• Simulation Framework:

• SESC for architecture simulation

• CACTI, McPAT, and NVSim for power, 

energy, and area simulation

• Benchmarks:

• Single-threaded: SPEC CPU2000

• Multi-threaded: SPLASH2 and PARSEC

• Main Evaluated Configuration:

• CMP with 64 out of order cores

Methodology

14

• 8-bank design SRAM/STT-RAM hybrid structures
• 3.3ns STT-RAM write latency for checkpointing
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NVSleepMiss: 23% (SPECFP) and 17% (SPECINT) energy reduction

NVSleepMiss Energy Reduction
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NVSleepBarrier Energy Reduction
NVSleepBarrier: 34% energy reduction for apps with >10 barriers
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Sensitivity Studies
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More details can be found in the paper!
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Conclusion

• The first work to use non-volatility feature of STT-RAM to implement 

pipeline-level checkpointing

• A general and low overhead framework for reducing energy through 

exploiting short idle execution phases

• Achieved energy reduction of 17-34% with less than 3% performance and 

area overheads
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Questions?
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Thank you!
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Backup Slides
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NVSleep MSHR Design
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Core Idle Time Analysis
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Performance Overhead
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Area Overhead

• Area – less than 3% compared to SRAM baseline

• STT-RAM shadow structures increase area

• STT-RAM caches help decrease area
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