
NVSleep: Using Non-Volatile Memory to 
Enable Fast Sleep/Wakeup of Idle Cores

Xiang Pan and Radu Teodorescu
Computer Architecture Research Lab

http://arch.cse.ohio-state.edu



Outline

• Motivation

• NVSleep Framework Design

• NVSleep Implementation

• Evaluation

• Conclusion

NVSleep: Using Non-Volatile Memory to Enable Fast Sleep/Wakeup of Idle Cores
Xiang Pan and Radu Teodorescu

2



• Idle/leakage power: source of inefficiency in CMPs

• Expected to increase in future technologies

• Cores are often idle, wasting power

• Power gating can help

• Functional units with little or no states (ALUs) – power gating OK

• Most FUs have significant states (RF, ROB, …) – power gating expensive

• NVSleep Idea: non-volatile memory can enable fast micro-checkpointing

• Reduce the performance overhead of power gating

• Enable power gating during short idle intervals (e.g. stalls on LLC misses)

Motivation

3

Idle Power Breakdown

Idle (30%)

Active (70%)

Shimpi et al., The Haswell Review: 
Intel Core i7-4770K & i5-4670K 
Tested, www.anandtech.com

NVSleep: Using Non-Volatile Memory to Enable Fast Sleep/Wakeup of Idle Cores
Xiang Pan and Radu Teodorescu



• We use Spin Transfer Torque RAM, a new type of magnetic memory

• STT-RAM can be a good candidate for NVSleep checkpointing

• STT-RAM has other good characteristics:

• ~4X higher density than SRAM, better scalability

• Infinite write endurance

STT-RAM in NVSleep

4

NVSleep checkpointing

Non-volatility

Low latency access

Low energy

STT-RAM

Long data retention time (as long as 10 years)

Fast read (~0.9X SRAM)

Low energy read (~0.7X SRAM)







NVSleep: Using Non-Volatile Memory to Enable Fast Sleep/Wakeup of Idle Cores
Xiang Pan and Radu Teodorescu

and slow write (~ 20X SRAM)

and high energy write
(~20X SRAM)



Outline

• Motivation

• NVSleep Framework Design

• NVSleep Implementation

• Evaluation

• Conclusion

5NVSleep: Using Non-Volatile Memory to Enable Fast Sleep/Wakeup of Idle Cores
Xiang Pan and Radu Teodorescu



• NVSleep leverages STT-RAM for on-chip storage structures

• Write latency-tolerant units (caches, TLBs, etc.) are implemented with STT-RAM 

(combined with SRAM write buffers to help hide long latency writes)

• Write latency-sensitive units (RF, ROB, etc.) are implemented with hybrid 

SRAM/STT-RAM design

NVSleep Framework

6

Ex
ec

u
ti

o
n

 C
lu

st
er

Caches, TLBs, 
etc.

RF, ROB, 
etc.

CoreSTT-RAM

SRAM

CMOS

SHTDWN

WAKEUP

NVSleep: Using Non-Volatile Memory to Enable Fast Sleep/Wakeup of Idle Cores
Xiang Pan and Radu Teodorescu



SRAM/STT-RAM hybrid Design

7

• SRAM for primary storage

• STT-RAM shadow of identical size 

used for micro-checkpointing

• Banked design to parallelize 

checkpointing process

SRAM Master STT-RAM Shadow

b
an

k 
0

b
an

k 
1

b
an

k 
2

b
an

k 
3

checkpoint control

NVSleep: Using Non-Volatile Memory to Enable Fast Sleep/Wakeup of Idle Cores
Xiang Pan and Radu Teodorescu



Outline

• Motivation

• NVSleep Framework Design

• NVSleep Implementation

• Evaluation

• Conclusion

8NVSleep: Using Non-Volatile Memory to Enable Fast Sleep/Wakeup of Idle Cores
Xiang Pan and Radu Teodorescu



• NVSleepMiss: Hardware-driven

• Ideal for short idle events, detected by hardware

• Our implementation: cores sleep on LLC misses

• NVSleepBarrier: Software API

• Exposes NVSleep to the system software

• Can be used by the OS or applications to “suspend” cores quickly

• Ideal for software observable idle events such as blocking on synchronization 

(e.g. barriers, locks, etc.)

• Our implementation: cores sleep when blocked on barriers

NVSleep Implementation

9NVSleep: Using Non-Volatile Memory to Enable Fast Sleep/Wakeup of Idle Cores
Xiang Pan and Radu Teodorescu



1. LD issued, missed in L1

2. LLC miss reported by LLC

3. Sleep signal sent to Core 0

4. Checkpointing starts

5. Core 0 goes to sleep after stalls

6. Missing data returns

7. Wakeup signal sent to Core 0

NVSleepMiss: Hardware-driven

10

Core 0

L1

0x00FF

CTRL

MSHR

Core N

L1

CTRL

L2
Cache

… …

1 2

3 6

7

LD(0x00FF) LLCMiss(0x00FF)

SHTDWN Data(0x00FF)

WAKEUP

• Checkpointing and wakeup of cores are coordinated by the L1 cache 

controller of each core

• Hardware-driven checkpointing/wakeup sequence:

4 CKP

5 Sleep

NVSleep: Using Non-Volatile Memory to Enable Fast Sleep/Wakeup of Idle Cores
Xiang Pan and Radu Teodorescu



• Expose micro-checkpointing system to software through API

• Dedicated sleep(0xADDR) instruction

• When executed on a core – it will shut down

• Wakeup triggered by another core through write operation to 0xADDR

NVSleepBarrier: Software API

11NVSleep: Using Non-Volatile Memory to Enable Fast Sleep/Wakeup of Idle Cores
Xiang Pan and Radu Teodorescu

• Example application in barrier:

• All but last thread – sleep(&sense)

• Last thread writes to sense, 

wakes-up all other threads

void barrier(int count, int sense, int num_threads)
{

int local_sense;
local_sense = !sense;

if (count != (num_threads - 1)) {
while (local_sense != sense) {

sleep(&sense);
}

}
else {

count = 0;
sense = local_sense;

}
}



• Software-driven checkpointing/wakeup sequence:

NVSleepBarrier: Software API

12

L2
Cache

… …

Core N

L1

CTRL

3 ST(&sense)

4

5

INV(&sense)

WAKEUP
1. sleep(&sense) executed by Core 0

2. “&sense” reserved in Core 0 L1

3. write(&sense) executed by Core N

4. Coherence: invalidate(&sense)

5. Wakeup signal sent to all cores

Core 0

L1

CTRL

1

2

sleep(&sense)

Core 1

L1

CTRL

&sense r

&sense r

&sense w

NVSleep: Using Non-Volatile Memory to Enable Fast Sleep/Wakeup of Idle Cores
Xiang Pan and Radu Teodorescu



Outline

• Motivation

• NVSleep Framework Design

• NVSleep Implementation

• Evaluation

• Conclusion

13NVSleep: Using Non-Volatile Memory to Enable Fast Sleep/Wakeup of Idle Cores
Xiang Pan and Radu Teodorescu



• Simulation Framework:

• SESC for architecture simulation

• CACTI, McPAT, and NVSim for power, 

energy, and area simulation

• Benchmarks:

• Single-threaded: SPEC CPU2000

• Multi-threaded: SPLASH2 and PARSEC

• Main Evaluated Configuration:

• CMP with 64 out of order cores

Methodology

14

• 8-bank design SRAM/STT-RAM hybrid structures
• 3.3ns STT-RAM write latency for checkpointing

NVSleep: Using Non-Volatile Memory to Enable Fast Sleep/Wakeup of Idle Cores
Xiang Pan and Radu Teodorescu



NVSleepMiss: 23% (SPECFP) and 17% (SPECINT) energy reduction

NVSleepMiss Energy Reduction

15

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

bzip2 crafty gap gzip mcf parser twolf vortex GeoMean

N
o

rm
al

iz
ed

 E
n

er
gy

SPEC Integer Benchmarks

SRAM Baseline NVNoSleep NVSleepMiss NVSleepIdeal

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

art ammp applu apsi equake mgrid sixtrack swim wupwise GeoMean

N
o

rm
al

iz
ed

 E
n

er
gy

SPEC FP Benchmarks

SRAM Baseline NVNoSleep NVSleepMiss NVSleepIdeal

NVSleep: Using Non-Volatile Memory to Enable Fast Sleep/Wakeup of Idle Cores
Xiang Pan and Radu Teodorescu

10%

23%
30%



NVSleepBarrier Energy Reduction
NVSleepBarrier: 34% energy reduction for apps with >10 barriers

16

0.6

0.7

0.8

0.9

1

blackscholes dedup swaptions cholesky fft raytrace GeoMean

N
o

rm
al

iz
ed

 E
n

er
gy

Multithreaded Apps with Low Barrier Count (<10)

SRAM Baseline NVNoSleep NVSleepMiss NVSleepBarrier NVSleepCombined

0

0.2

0.4

0.6

0.8

1

bodytrack fluidanimate streamcluster barnes lu ocean radiosity radix water-nsquared GeoMean

N
o

rm
al

iz
ed

 E
n

er
gy

Multithreaded Apps with High Barrier Count (>10)

SRAM Baseline NVNoSleep NVSleepMiss NVSleepBarrier NVSleepCombined

NVSleep: Using Non-Volatile Memory to Enable Fast Sleep/Wakeup of Idle Cores
Xiang Pan and Radu Teodorescu



Sensitivity Studies

17

0.5

0.6

0.7

0.8

0.9

1

16 cores 32 cores 64 cores

N
o

rm
al

iz
ed

 E
n

er
gy

Multithreaded Apps with High Barrier Count (>10)

SRAM Baseline NVSleepMiss NVSleepBarrier NVSleepCombined

0.8

0.9

1

1.1

2 3 4 5 6 7 8 9 10 11 12 13

N
o

rm
al

iz
ed

 E
n

er
gy

STT-RAM Write Latency (ns)

NVNoSleep NVSleepMiss NVSleepBarrier

Num of Banks energy/access (pJ) area (mm2)

1 0.448 0.007543

2 0.552 0.012091

4 0.628 0.018883

8 0.741 0.029032

0.5

0.7

0.9

1.1

1-bank 2-bank 4-bank 8-bankN
o

rm
al

iz
ed

 E
n

er
gy

SPEC Benchmarks

SRAM Baseline NVNoSleep NVSleepMiss

More details can be found in the paper!

NVSleep: Using Non-Volatile Memory to Enable Fast Sleep/Wakeup of Idle Cores
Xiang Pan and Radu Teodorescu



Conclusion

• The first work to use non-volatility feature of STT-RAM to implement 

pipeline-level checkpointing

• A general and low overhead framework for reducing energy through 

exploiting short idle execution phases

• Achieved energy reduction of 17-34% with less than 3% performance and 

area overheads

18NVSleep: Using Non-Volatile Memory to Enable Fast Sleep/Wakeup of Idle Cores
Xiang Pan and Radu Teodorescu



Questions?

19

Thank you!

NVSleep: Using Non-Volatile Memory to Enable Fast Sleep/Wakeup of Idle Cores
Xiang Pan and Radu Teodorescu



Backup Slides

20NVSleep: Using Non-Volatile Memory to Enable Fast Sleep/Wakeup of Idle Cores
Xiang Pan and Radu Teodorescu



NVSleep MSHR Design

21NVSleep: Using Non-Volatile Memory to Enable Fast Sleep/Wakeup of Idle Cores
Xiang Pan and Radu Teodorescu



Core Idle Time Analysis

22NVSleep: Using Non-Volatile Memory to Enable Fast Sleep/Wakeup of Idle Cores
Xiang Pan and Radu Teodorescu



Performance Overhead

23NVSleep: Using Non-Volatile Memory to Enable Fast Sleep/Wakeup of Idle Cores
Xiang Pan and Radu Teodorescu



Area Overhead

• Area – less than 3% compared to SRAM baseline

• STT-RAM shadow structures increase area

• STT-RAM caches help decrease area

24NVSleep: Using Non-Volatile Memory to Enable Fast Sleep/Wakeup of Idle Cores
Xiang Pan and Radu Teodorescu


