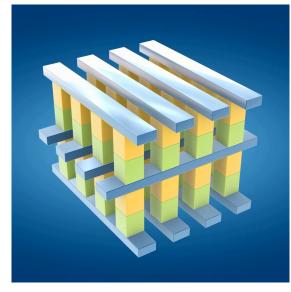
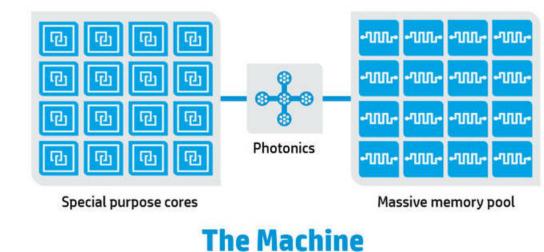
NVCool: When Non-Volatile Caches Meet Cold Boot Attacks

Xiang Pan⁺, Anys Bacha[‡], Spencer Rudolph, Li Zhou, Yinqian Zhang, and Radu Teodorescu

The Ohio State University, Uber⁺, University of Michigan[‡]

The Ohio State University





Non-Volatile Memory is Coming

- Low power, high density, and good scalability make NVM attractive to industry companies
- 3D XPoint from Intel and Micron

• The Machine from HPE

Crossbar and Everspin also make and sell NVM products

Cold Boot Attack on DRAM

• Cooling DRAM to a certain low temperature can preserve its data for a short duration of time even without power supply

Halderman et al., Lest We Remember: Cold Boot Attacks on Encryption Keys, citp.princeton.edu/research/memory

- Plug in the frozen DRAM DIMMs to a pre-prepared machine and run key search program to get secret keys
- Successfully conducted on both laptop and mobile computer systems

Cold Boot Attack on NVM

- Trivial for NVM main memory but we focus on NVM caches
- NVM caches are vulnerable to cold boot attacks in a way SRAM caches are not
 - A few ms data retention time without power supply at cold temperatures
- Challenges
 - Caches only store a subset of data
 - Cache structure (set-associative) is very different from main memory (page)
 - Can we really find secrets from NVM caches?

Threat Model

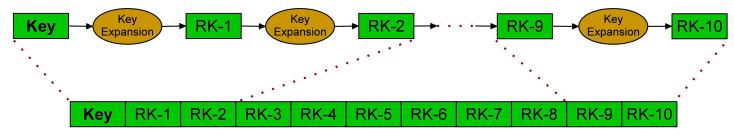
- Cache-Aware AES Key Search
- Methodology
- Attack Analysis
- Countermeasure
- Conclusions

Threat Model

- Attacker has physical access to the victim device
- Attacker has necessary equipments and knowledge to extract data from CPU caches

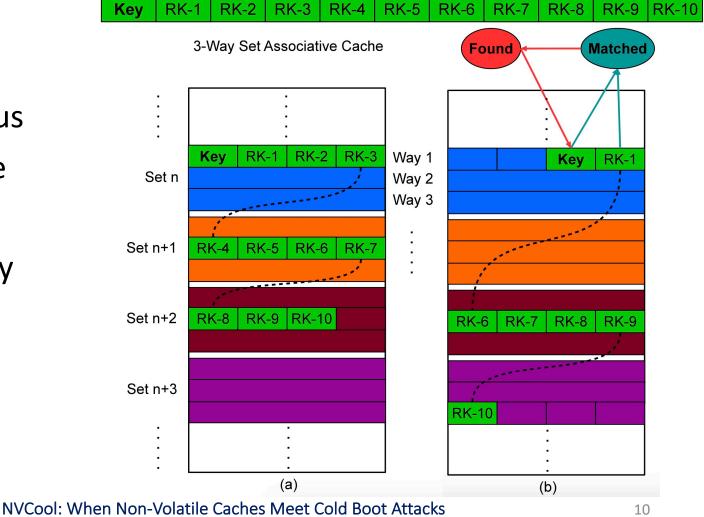
Threat Model

- What secrets can be found from cache?
 - Photos, emails, messages, disk encryption keys, ssh keys...
 - Anything stored in cache and useful to attacker
 - This work focuses on disk encryption keys as an example


- Threat Model
- Cache-Aware AES Key Search
- Methodology
- Attack Analysis
- Countermeasure
- Conclusions

AES Key Schedule

- AES key search:
 - Original key needs to be expanded before encryption/decryption operations


- Current round key is deterministically computed from the previous round key
- Scanning memory image sequentially can find the key if exists
- Challenges in cache-based approach:
 - Non-contiguous memory space
 - Incomplete key schedules

Cache Aware AES Key Search

- Non-contiguous memory space
- Incomplete key schedules

AES-128 Key Schedule

Xiang Pan, Anys Bacha, Spencer Rudolph, Li Zhou, Yinqian Zhang, and Radu Teodorescu

- Threat Model
- Cache-Aware AES Key Search
- Methodology
- Attack Analysis
- Countermeasure
- Conclusions

Experimental Methodology

		Hardware Configuration	
		Cores	8 (out-of-order)
		ISA	ARMv8 (64-bit)
Software Configuration		Frequency	3GHz
Simulator	gem5	IL1/DL1 Size	32KB
00		IL1/DL1 Block Size	64B
OS	Ubuntu Trusty 14.04 64-bit	IL1/DL1 Associativity	8-way
		IL1/DL1 Latency	2 cycles
Disk Encryption	dm-crypt + LUKS	Coherence Protocol	MESI
Module		L2 Size	2, 4, 8 (default), and 128MB
Encryption Algorithm	AES-XTS with 128-bit	L2 Block Size	64B
	key	L2 Associativity	16-way
Application	SPEC CPU2006	L2 Latency	20 cycles
		Memory Type	DDR3-1600 SDRAM [27]
Execution	1B insts to run	Memory Size	2GB
	1M insts to sample	Memory Page Size	4KB
		Memory Latency	300 cycles
		Disk Type	Solid-State Disk (SSD)
		Disk Latency	150us

- Threat Model
- Cache-Aware AES Key Search
- Methodology
- Attack Analysis
- Countermeasure
- Conclusions

Attack Scenarios

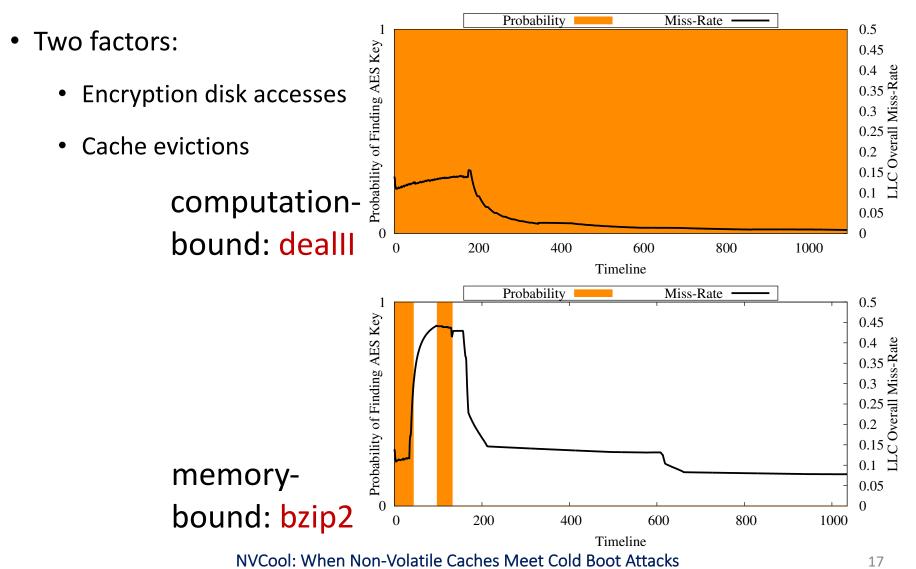
- Random Attack
 - Execution can be stopped at any given time to extract secrets from CPU caches
 - Due to power failures, disk failures, system crashes...
- Targeted Power-Off Attack
 - Conduct power-off operation on victim systems and extract secrets from CPU caches
 - Can be a normal power-off or a forced power-off

Experiments and Benchmarks

NVCool Experiments		
NoNEON	System without ARM's cryptographic	
	acceleration support	
NEON	System with ARM's cryptographic	
	acceleration support	
STAvg	Geometric mean of single-threaded	
SIAVE	benchmarks from SPEC CPU2006	

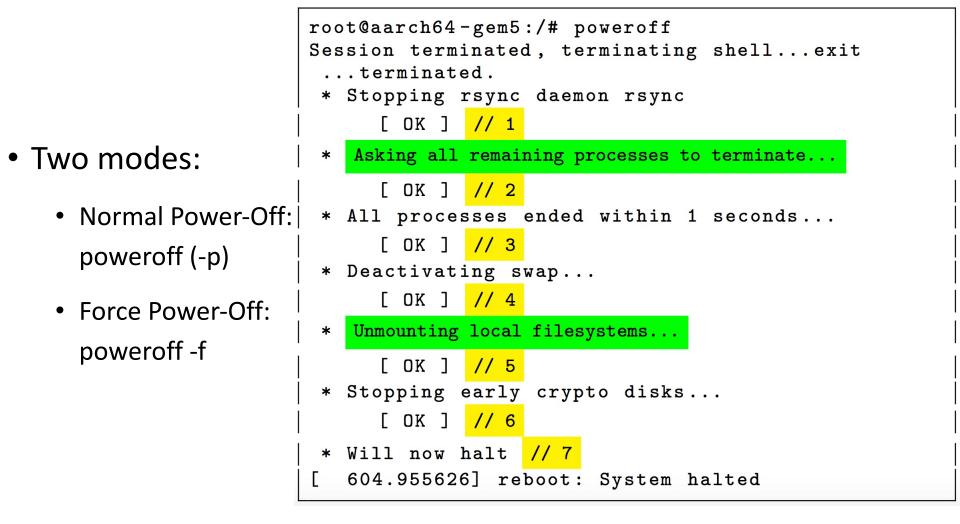
Mixed Benchmark Groups			
mixC	compute-	calculix, dealII, gamess, gromacs,	
	bound	h264ref, namd, perlbench, povray	
mixM	memory-	astar, cactusADM, GemsFDTD, lbm,	
	bound	mcf, milc, omnetpp, soplex	
mixCM	compute/	dealII, gamess, namd, perlbench,	
	memory	astar, cactusADM, lbm, milc	

Random Attack Analysis



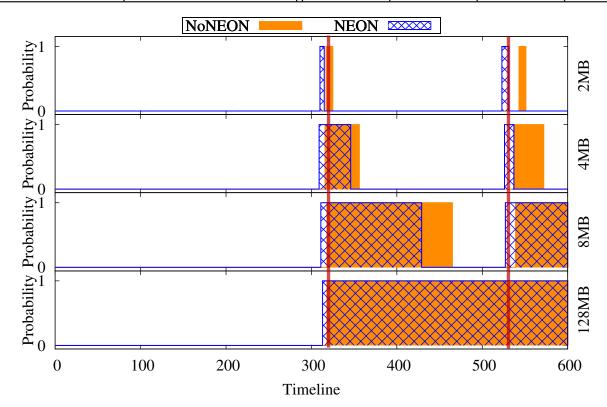
- Overall probability of finding AES keys in systems with different LLC sizes
- Larger caches increase the system vulnerability to random attack
- Systems running multi-programs are more vulnerable
- NoNEON systems are generally more vulnerable than NEON systems

Random Attack Analysis



Xiang Pan, Anys Bacha, Spencer Rudolph, Li Zhou, Yinqian Zhang, and Radu Teodorescu

Power-Off Attack Analysis



Power-Off Attack Analysis

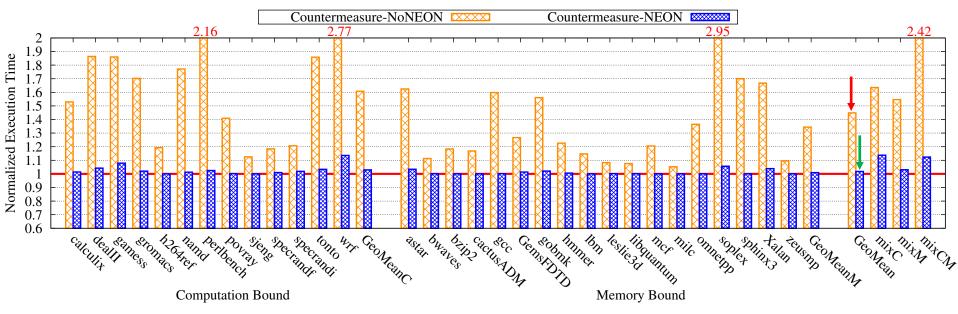
Mode	Command	Keys exist in cache after power-off?			
		2MB	4MB	8MB	128MB
Normal Power-off	poweroff (-p)	N	N	Y	Y
Forced Power-off	poweroff -f	Y	Y	Y	Y

NVCool: When Non-Volatile Caches Meet Cold Boot Attacks Xiang Pan, Anys Bacha, Spencer Rudolph, Li Zhou, Yinqian Zhang, and Radu Teodorescu

- Threat Model
- Cache-Aware AES Key Search
- Methodology
- Attack Analysis
- Countermeasure
- Conclusions

Software-based Countermeasure

- Key idea: marking secret information as uncacheable
 - Walk through page table at kernel space; mark sensitive pages as uncacheable
- Effectiveness


	NoNEON	NEON	Countermeasure
Single-threaded	23 - 70%	5 - 77%	0%
Benchmark			
mixC	85 - 100%	80 - 100%	0%
mixM	26 - 100%	20 - 100%	0%
mixCM	38 - 100%	34 - 100%	0%
Normal Power-off	0 - 100%	0 - 100%	0%
Forced Power-off	100%	100%	<u>0%</u>

Performance Analysis

• Performance Overhead

- NoNEON systems show high performance overhead
- NEON systems show less than 3% average performance overhead
- Performance optimizations are discussed in the paper

- Threat Model
- Cache-Aware AES Key Search
- Methodology
- Attack Analysis
- Countermeasure
- Conclusions

Conclusions

- Non-volatile caches are vulnerable to cold boot attacks
- Two attacks on disk encryption keys are successfully conducted random attacks and targeted power-off attacks
- A software-based countermeasure that allocates sensitive information into uncacheable memory pages is developed and shown effective
- We hope this work will serve as a starting point for future studies on the security vulnerabilities of NVM caches and their countermeasures

Questions?

Thank you!