Respin: Rethinking Near-Threshold Multiprocessor Design with Non-Volatile Memory

Xiang Pan, Anys Bacha, and Radu Teodorescu Computer Architecture Research Lab

http://arch.cse.ohio-state.edu

Universal Demand for Low Power

- Mobility
- Battery life
- Performance
- Power constraints
- Energy cost
- Environment

Respin: Rethinking Near-Threshold Multiprocessor Design with Non-Volatile Memory 2 Xiang Pan, Anys Bacha, and Radu Teodorescu

Near-Threshold Operation

COMPUTER ARCHITECTURE RESEARCH LAB

Challenges in Near-Threshold

Performance degradation

- Amplified process variation
- Leakage power dominates
- The initial idea of Respin Build caches in NT-CMP with "leakage-free" nonvolatile memories to reduce power consumption

Respin: Rethinking Near-Threshold Multiprocessor Design with Non-Volatile Memory 4 Xiang Pan, Anys Bacha, and Radu Teodorescu

Outline

Basics of NVM

- Respin Architecture
- Methodology and Evaluation
- Conclusion

Non-Volatile Memory Basics

- Non-Volatility Resistance as data representation (e.g. PCRAM, STT-RAM, ReRAM, etc.)
- Near-Zero Leakage Power Good fit for future power-constrained computing
- High Density Great design candidate in the big data era
- Good Performance Feasible for on-chip storage replacement

STT-RAM

- Unique features of STT-RAM: fast read speed, low read energy, unlimited write endurance, and good compatibility with CMOS technology
 - Shortcomings: long write latency and high write energy

Respin: Rethinking Near-Threshold Multiprocessor Design with Non-Volatile Memory 7 Xiang Pan, Anys Bacha, and Radu Teodorescu

STT-RAM is Good Fit for NT-CMP

Outline

- Basics of NVM
- Respin Architecture
- Methodology and Evaluation
- Conclusion

Respin Architecture

- Cores operate at NT-Vdd rail with low frequencies
- Caches are built with STT-RAM and operate at high-Vdd rail making read speed extremely fast
- Clustered-CMP with fast STT-RAM read enables within-cluster shared L1 cache design, removing coherence costs

Respin: Rethinking Near-Threshold Multiprocessor Design with Non-Volatile Memory10Xiang Pan, Anys Bacha, and Radu Teodorescu10

Shared Cache Controller

(b)

Respin: Rethinking Near-Threshold Multiprocessor Design with Non-Volatile Memory Xiang Pan, Anys Bacha, and Radu Teodorescu

Dynamic Core Consolidation

- High process variation and leakage in NT-CMP lead to fast cores more energy-efficient than slow ones
- Dynamically consolidate threads ٠ onto more efficient cores with greedy search at runtime can further save energy
- Mechanism implemented in • system firmware, energy-perinstruction used as greedy selection metric, and instruction count used as evaluation interval

Greedy Selection

- A greedy approach is used to search for optimal system configurations at application runtime
 - Energy-Per-Instruction (EPI) as evaluation metric
 - Instruction count as evaluation interval

Respin: Rethinking Near-Threshold Multiprocessor Design with Non-Volatile Memory 13 Xiang Pan, Anys Bacha, and Radu Teodorescu

Outline

- Basics of NVM
- Respin Architecture
- Methodology and Evaluation
- Conclusion

Methodology

Level	Size (mm²)	Block Size	Associativity	Read/Write Ports
L1I (Private/Shared within Cluster)	16KB (Private)/256KB (Shared within	32B	2-way	1 /1
L1D (Private/Shared within Cluster)	Cluster)		4-way	
L2 (Shared within Cluster)	8MB (Small)/16MB (Medium)/32MB (Large)	64B	8-way	1/1
L3 (Shared within Chip)	24MB (Small)/48MB (Medium)/ 96MB (Large)	128B	16-way	

Table 1. Summary of Cache Parameters.

	Vdd Rail	Area (mm²)	Read/Write Latency (ns)	Read/Write Energy (pJ)	Leakage Power (mW)
SRAM (16KB × 16)	Low (0.65V)		1.337	2.578	573
SRAM (256KB)		0.9176	0.5336	42.41	881
STT-RAM (256KB)	High (1.0V)	0.2451	0.3774 5.208	29.32/209.3	114

Table 2. Comparison of SRAM vs. STT-RAM Technology Parameters.

Respin: Rethinking Near-Threshold Multiprocessor Design with Non-Volatile Memory 15 Xiang Pan, Anys Bacha, and Radu Teodorescu

Methodology

- Simulation Framework:
 - SESC for architectural simulation
 - CACTI, McPAT, and NVSim for latency, power, energy, and area simulation
- Benchmarks:
 - SPLASH2 and PARSEC
- Main Evaluated Configuration:
 - 64-core CMP with four 16-core clusters
 - Medium size L2 and L3 caches
 - 0.4ns shared L1 cache read latency

CMP Architecture				
Cores	64 out-of-order			
Fetch/Issue/Commit Width	2/2/2			
Register File Size	76 int, 56 fp			
Instruction Window Size	56 int, 24 fp			
Reorder Buffer Size	80 entries			
Load/Store Queue Size	38 entries			
NoC Interconnect	2D Torus			
Coherence Protocol	MESI			
Consistency Model	Release Consistency			
Technology	22nm			
NT-Vdd	0.4V (Core), 0.65V (Cache)			
Nominal-Vdd	1.0V			
Core Frequency Range	375MHz – 725MHz			
Median Core Frequency	500MHz			
Variation Parameters				

Vth std. dev./mean (σ/μ)

12% (Chip), 10% (Cluster)

Table 3. Summary of Experimental Parameters.Respin: Rethinking Near-Threshold Multiprocessor Design with Non-Volatile Memory16Xiang Pan, Anys Bacha, and Radu Teodorescu

SH-STT

Power and Performance

Respin: Rethinking Near-Threshold Multiprocessor Design with Non-Volatile Memory17Xiang Pan, Anys Bacha, and Radu Teodorescu17

PR-SRAM-NT HP-SRAM-CMP SH-SRAM-Nom

•

Energy Consumption

• For medium sized cache, Respin achieved 22% energy savings with the basic shared STT-RAM cache design plus additional 10% with core consolidation enabled

Respin: Rethinking Near-Threshold Multiprocessor Design with Non-Volatile Memory Xiang Pan, Anys Bacha, and Radu Teodorescu

 In most cases our greedy algorithm matches well with the oracle while in very few cases suboptimal selection becomes the barrier to slow down the pace of our greedy mechanism

Respin: Rethinking Near-Threshold Multiprocessor Design with Non-Volatile Memory 19 Xiang Pan, Anys Bacha, and Radu Teodorescu

Shared Cache Access Load

 More than 95% of the incoming requests can be serviced in one processor core cycle

Respin: Rethinking Near-Threshold Multiprocessor Design with Non-Volatile Memory 20 Xiang Pan, Anys Bacha, and Radu Teodorescu

Sensitivity Study on Cluster Size

 16-core cluster provides the best trade-off between data sharing among cores and shared cache access load, giving ~11% performance gain

Cluster Size (#cores)	Shared L1 (I/D) Size (KB)	Performance Gain (%)
4	64	4.82
8	128	6.29
16	256	10.81
32	512	2.50

Number of Active Cores in Dynamic Core Consolidation

 Strong phased behavior can be observed across all applications, making our dynamic core consolidation mechanism very useful

Respin: Rethinking Near-Threshold Multiprocessor Design with Non-Volatile Memory 22 Xiang Pan, Anys Bacha, and Radu Teodorescu

Outline

Basics of NVM

- Respin Architecture
- Methodology and Evaluation
- Conclusion

Conclusion

- The first work to explore the use of non-volatile caches in near-threshold chip multi-processors
- A novel architecture designed to enhance NT-CMP performance and reduce energy consumption by sharing L1 caches and implementing dynamic core consolidation mechanism
- Achieved energy reduction by 33% and improved performance by 11%

Questions?

Thank you!

Respin: Rethinking Near-Threshold Multiprocessor Design with Non-Volatile Memory 25 Xiang Pan, Anys Bacha, and Radu Teodorescu