
Using STT-RAM to Enable Energy-Efficient
Near-Threshold Chip Multiprocessors∗

Xiang Pan
Computer Science and Engineering

The Ohio State University
panxi@cse.ohio-state.edu

Radu Teodorescu
Computer Science and Engineering

The Ohio State University
teodores@cse.ohio-state.edu

ABSTRACT
Near-threshold computing is gaining traction as an energy-
efficient solution for power-constrained systems. This paper
proposes a novel near-threshold chip multiprocessor design
that uses non-volatile spin-transfer torque random access
memory (STT-RAM) technology to implement all on-chip
caches. This technology has several advantages over SRAM
that are particularly useful in near-threshold designs. Pri-
marily, STT-RAM has very low leakage, saving a substantial
fraction of the power consumed by near-threshold chips. In
addition, the STT-RAM components run at a higher sup-
ply voltage to speed up write operations. This has the
effect of making cache reads very fast to the point where
L1 caches can be shared by several cores, improving perfor-
mance. Overall, the proposed design saves 11–33% energy
compared to an SRAM-based near-threshold system.

1. INTRODUCTION
Power consumption is now a first-class constraint in micro-

processor design. Agressive supply voltage (Vdd) reduction
to close to (or even below) the transistor threshold volt-
age (Vth) has been investigated as an energy-efficient so-
lution for driving future processors with hundreds of cores
[2]. Near-threshold operation lowers power consumption by
about 100× at a cost of 10× lower operating frequency, po-
tentially improving energy efficiency by an order of magni-
tude. However, near-threshold operation faces several chal-
lenges including decreased reliability, increased sensitivity to
process variation, and high relative leakage power.

While dynamic power scales quadratically with supply
voltage and linearly with frequency, leakage power only scales
linearly with Vdd. As a result, leakage power dominates
power consumption at low voltages. Most of that leakage is

∗This work was supported in part by the Defense Advanced
Research Projects Agency under the PERFECT (DARPA-
BAA-12-24) program and the National Science Foundation
under grants CCF-1117799 and CCF-1253933.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
PACT’14, August 24–27, 2014, Edmonton, AB, Canada.
ACM 978-1-4503-2809-8/14/08.
http://dx.doi.org/10.1145/2628071.2628132 .

dissipated by on-chip caches, which can account for 20–40%
of the total power depending on size.

We present a novel near-threshold chip multiprocessor de-
sign that uses non-volatile spin-transfer torque memory (STT-
RAM) technology to implement all on-chip caches. This
technology has several advantages over SRAM that are par-
ticularly useful in near-threshold designs such as low leakage,
high density, and high endurance. A drawback of STT-RAM
is its higher write latency and energy compared to SRAM.
The proposed design runs the STT-RAM components of the
chip at a higher supply voltage to speed up write operations.
This has the effect of making cache reads very fast to the
point where L1 caches can be shared by several cores within
a cluster. This eliminates the need for within-cluster cache
coherence improving latency and energy. We leverage the
shared cache design in our CMP to help mitigate the effects
of variation in core frequency.

Evaluation using parallel benchmarks from SPLASH2 and
PARSEC shows average energy savings of 11–33% (depend-
ing on cache size) and performance improvement of 17%
relative to the baseline near-threshold system.

2. NT CMP WITH STT-RAM CACHES
We design an NT CMP processor that replaces SRAM

caches with STT-RAM versions. The CMP is organized
in clusters that share a last-level cache (L3). The CMP
has two externally regulated voltage domains. One domain,
which contains most of the cores’ logic is set at low NT
Vdd. The second domain, which includes the entire STT-
RAM cache hierarchy and a few logic units, runs at high
(nominal) Vdd. The main reason for running the STT-RAM
domain at nominal Vdd is to improve write speed. Since
cores will generally run at lower frequencies at NTV, the
write latency is relatively smaller (about 3 cycles for a core
running at 500MHz).
Shared Cache Hierarchy: The nominal voltage STT-
RAM cache has very fast read speeds, on the order of 0.4ns
for a 256K L1 cache. This is much faster than needed for
single-cycle cache reads at the lower NT frequencies (250MHz-
1.25GHz). We exploit this property by sharing a single L1
instruction and an L1 data cache, as well as an L2 cache
between all the cores in each cluster. This is achieved by
running the shared L1 caches at high frequency (2.5GHz
in our experiments - to match the 0.4ns access time) and
time-multiplexing requests from the cores in each cluster.
This greatly reduces the latency cost of sharing data be-
tween threads executing on different cores. It also reduces
implementation complexity and energy cost.



Cache 
CLK (0.4ns) 

R0 (0.8ns) 
R1 (1.2ns) 
R2 (0.8ns) 
R3 (1.2ns) 
R4 (1.6ns) 

cycle 0 cycle 1 cycle 2 cycle 3 cycle 4
service R0 service R2 service R1 service R3

half-miss R3

cannot service 
R3 in time

service R4

Figure 1: Example timeline of access requests from cores
running at different frequencies to a fast shared cache.

Since our design allows cores in the same cluster to run at
different frequencies, arbitrating access to the shared cache
has to account for the different latency tolerances of each
core. To simplify the implementation, the shared cache and
all cores run at a frequencies corresponding to integer mul-
tipliers of a base clock period. As a result, all cache accesses
align at cycle boundaries with the high frequency cache.

Figure 1 shows an example timeline illustrating how multi-
ple access requests (R0-R4) from cores running with different
clock periods (0.8ns-1.6ns) are served by the cache. In cycle
0 the cache receives requests R0-R3 from four different cores.
For each request the figure includes a line segment that rep-
resents the cycle time of the core issuing that request. For
instance, R1 comes from a core running at 833MHz (1.2ns
clock cycle time). To ensure that, in the event of a hit, the
cache responds within a single core clock cycle, the cache
must send the data by the end of cache cycle 2.

In cycle 0 we have four new requests out of which the cache
can only service one. In this example request R0 is the most
urgent, so it will be serviced first, followed by request R2 in
cycle 1. In cycle 2 both requests R1 and R3 are expiring but
only one can be serviced. The controller chooses to serve
R1; for R3 a “half-miss” event will be sent to the processor
to indicate that the request could not be fulfilled in a single
cycle, but this is not necessarily an L1 miss. Request R3
will be rescheduled to the following cycle.
Mitigating Frequency Variation: The shared cache de-
sign significantly reduces thread migration overhead. We
leverage this benefit to reduce the effects of core-to-core fre-
quency variation on application performance. In this design
we allow cores to run at their best frequency, resulting in
heterogeneous performance. To deal with this heterogene-
ity, we periodically migrate applications between fast and
slow cores. The goal is to ensure multiple threads of parallel
applications make roughly equal progress even though they
are running on cores with different frequencies.

3. EVALUATION
Methodology: We modeled a 64-core CMP with a range
of cluster sizes from 4 to 32 cores. Most experiments were
conducted with a cluster size of 16 cores, which we found to
be optimal. We also experimented with three cache sizes:
small, medium, and large. Each core is a dual-issue out-
of-order architecture. We used SESC to perform all our
simulations and NVSim [1] to get STT-RAM latency and
energy. We ran SPLASH-2 and PARSEC.
Power Analysis: Figure 2 shows the reduction in power
consumption from the proposed architecture without thread
migration (SH-STT-NoMig). We show results for three cache
configurations: small, medium, and large. The medium size
cache is the most typical one, with about 1MB/core of total
cache capacity. We compare to a baseline that uses SRAM

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

PR-SRAM-NT

SH-SRAM-Nom

SH-STT-NoMig

PR-SRAM-NT

SH-SRAM-Nom

SH-STT-NoMig

PR-SRAM-NT

SH-SRAM-Nom

SH-STT-NoMig

N
o

rm
al

iz
ed

 T
o

ta
l 

C
h

ip
 P

o
w

er

Small Cache Medium Cache Large Cache

leakage dynamic

Figure 2: Power reduction of proposed design for three
L2/L3 cache sizes: small, medium, and large.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

Small Cache Medium Cache Large Cache

N
o

rm
al

iz
ed

 E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

PR-SRAM-NT
PR-SRAM-Nom

SH-SRAM-Nom
SH-STT-NoMig

SH-STT-Mig-32K

Figure 3: Energy consumption for small, medium, and large
L2 and L3 cache configurations.

caches running at NT voltages in a traditional private cache
hierarchy (PR-SRAM-NT).

We can see that power is lower for SH-STT-NoMig com-
pared to the baseline in all configurations except for the
small cache one. The reduction in total power comes from
lower leakage power at the cost of slightly increased dynamic
power. For the medium and large configurations the power
savings are significant, at 6.4% and 16.3% respectively.

For reference, we also compare to a SRAM design with
shared cache running at nominal voltage (SH-SRAM-Nom).
SH-SRAM-Nom uses between 20% and 100% more power
than SH-STT-NoMig for the three cache sizes. This is due
to the much higher leakage power consumed by SRAM.
Energy Analysis: Our proposed design lowers power con-
sumption and reduces execution time. This results in impor-
tant energy savings. Figure 3 shows that SH-STT-NoMig
has 8% to 30% lower energy than the SRAM baseline de-
pending on the cache size configuration. As expected we see
much larger energy savings for the large cache configura-
tions. We also show that the PR-SRAM-Nom configuration
which uses SRAM caches at nominal Vdd uses 20-40% more
energy than the NT SRAM baseline (PR-SRAM-NT).

4. REFERENCES
[1] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A

Circuit-Level Performance, Energy, and Area Model for
Emerging Nonvolatile Memory,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 31, no. 7, pp. 994–1007, July 2012.

[2] R. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and
T. Mudge, “Near-Threshold Computing: Reclaiming Moore’s
Law Through Energy Efficient Integrated Circuits,”
Proceedings of the IEEE, vol. 98, no. 2, pp. 253–266,
February 2010.


