Using STT-RAM to Enable Energy-Efficient Near-Threshold Chip Multiprocessors Xiang Pan and Radu Teodorescu Computer Architecture Research Lab, The Ohio State University

Motivation

Problem: Increasing core counts in $CMPs \rightarrow "Power Wall"$

Solution: Near-Threshold Computing

Challenges:

- performance degradation
- amplified process variation
- leakage power dominates

Approach

- STT-RAM (Spin Transfer Torque Random Access Memory) has many promising characteristics.
- Great fit for near-threshold designs.

	NT-CMP			STT-RAM	
•••	High leakage power			Near-zero leakage power	
•••	Low operating frequency			Long latency writes	
Large	e numbers of cores requiring cache capacity	high	Higl	n density (~4x denser than SF	RAM)

Basic Idea: Use STT-RAM to build NT-CMP caches to save energy and mitigate process variation effects.

Architecture Design

Methodology

Architecture Configuration	Description
PR-SRAM-NT	NT chip with SRAM private L1(I/D) cache and shared L2/L3 cache
PR-SRAM-Nom	PR-SRAM-NT with nominal Vdd caches
SH-SRAM-Nom	PR-SRAM-Nom with nominal Vdd SRAM shared L1(I/D) cache
SH-STT-NoMig	NT core with nominal Vdd STT-RAM shared L1(I/D) cache and shared L2/L3 cache
SH-STT-Mig(-nK)	SH-STT-NoMig with a nominal Vdd shared branch predictor and performs thread migration every nK cycles
SH-STT-Mig-PRBP	SH-STT-Mig with NT private branch predictors
SH-STT-Mig-Ideal	SH-STT-Mig without any migration cost

Shared Cache Hierarchy

Multiplexing read requests in shared L1 caches

L1 cache much faster than cores \rightarrow Share L1 within a cluster \rightarrow Reduce coherence traffic, improving performance

Reduce Core-to-Core Variation Effects

- Add shared branch predictor and register file buffer components to the design to further reduce overhead.

Key Results Configurations: Small (8MB L2; 24MB L3); Medium (16MB L2; 48MB L3); Large (32MB L2; 96MB L3).

COMPUTER ARCHITECTURE **RESEARCH LAB**

	cycle 0	cycle 1	cycle 2	cycle 3	cycle 4
5)	service R0	service R2	service R1 half-miss R3	service R3	service R4
s)	00011				
s)	00111 —	> 00011 —	> 00001		
s)	00011 —	► 00001	half-miss		
s)	00111 —	> 00011	> 100011-	→ 00001	
s)		01111 —	> 00111 —	→ 00011 -	→ 00001

Relative Execution Time for Medium Cache Size 1.00								
			C).91	0.94	0.88		
							0.83	
					GeoMean			
AM-NT	PR-S	RAM-N	lom	SH-SI	RAM-Nom	SH-STT-NoMig	SH-STT-I	Vig-32K
r Size res)	(#	Sha	red	L1 (I)	/D) Size	Perfor	mance G	ain (%)
4				64			4.15	
8				128			8.82	
16				256			12.15	
32				512			-19.08	

				
64	1K 1	00К	160K	300K